<span>A measurement
that both magnitude and direction is a vector quantity. An example of this is a
moving car. The car exerts force due to its thrust and weight that runs in it. This
will give us the magnitude of the car. The resulting motion of the car in terms
of displacement, velocity and acceleration that determines its direction makes
it a vector quantity. On the other hand, a measurement that has only magnitude is
a scalar quantity. The energy exerted by the engine of the car is a scalar
quantity.</span>
Karl Schwarzschild devised the first general relativity model that would adequately describe a black hole in 1916.
What is Black Hole?
A black hole is an area of spacetime with such intense gravitational pull that nothing can escape from it, not even light or other electromagnetic waves. According to general relativity theory, a compact enough mass can bend spacetime into a black hole. The event horizon is the line beyond which there is no escape.
Black holes were once thought to be a mathematical curiosity, but theoretical research in the 1960s revealed that they were actually a general prediction of general relativity.
To know more about Black Hole refer:
brainly.com/question/7866362
#SPJ4
For this problem, we use the Coulomb's law written in equation as:
F = kQ₁Q₂/d²
where
F is the electrical force
k is a constant equal to 9×10⁹
Q₁ and Q₂ are the charge of the two objects
d is the distance between the two objects
Substituting the values:
F = (9×10⁹)(-22×10⁻⁹ C)(-22×10⁻⁹ C)/(0.10 m)²
F = 0.0004356 N
Answer:
The thrust is 
Explanation:
Given that,
Mass of gas, 
The rate at which the gas is expelling, 
We need to find the thrust produced by the gas.
We know that force is equal to the rate of change of momentum. So,

Also, p = mv

So,

So, the thrust is 