Answer:
The tin fork and knife, the copper coin, and the steel fence pole.
Explanation:
Those are both what people would call soft metals so they are malleable to the extent of probably not needing heavy duty equipment. It depends on you description of malleable because the steel fence pole could be malleable with the correct equipment and not snap in half if bent slowly enough.
The definition of malleable: (of a metal or other material) able to be hammered or pressed permanently out of shape without breaking or cracking.
But the glass table, marble sculpture and antique ceramic vase are nowhere near malleable because if you tried bending them they wouldn't bend but would shatter and break into pieces.
Answer:
FATS
Explanation:
Fats are made up of carbon and hydrogen elements joined together in long groups called hydrocarbons. The simplest unit of fat is the fatty acid, of which there are two types: saturated and unsaturated.
Answer:
the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
Explanation:
Given;
diameter of the ceiling fan, d = 90 cm = 0.9 m
angular speed of the fan, ω = 64 rpm
time taken for the fan to stop, t = 28 s
The distance traveled by the ceiling fan when it comes to a stop is calculated as;
The speed of the tip of a blade 10 s after the fan is turned off is calculated as;
Therefore, the speed of the tip of a blade 10 s after the fan is turned off is 16.889 m/s.
The focal length of given concave lens will be -26.85 cm
The height of an image to the height of an object is the ratio that is used to determine a lens' magnification. Additionally, it is provided in terms of object and image distance. It is equivalent to the object distance to image distance ratio.
Given concave lens creates a virtual image at -47.0 cm and a magnification of +1.75.
We have to find focal length
The focal length can be found out by following way:
Magnification = m = +1.75
m = hi/h
hi = -47 cm
1.75 = -47/h
h = -26.85 cm
So the focal length of given concave lens will be -26.85 cm
Learn more about magnification factor here:
brainly.com/question/6947486
#SPJ10
To calculate the initial velocity of the bike, we use the following equation
.
or
Here, u is initial velocity, v is final velocity, t is the time and d is the distance covered by bike.
Given, , and .
Substituting these values in above equation, we get
.
Thus, the initial velocity of the bike is 1.2 m/s.