Answer:
Explanation:
1) Given data:
Number of moles of lead = 4.3×10⁻³ mol
Mass of lead = ?
Solution:
Mass = number of moles × molar mass
Molar mass of lead = 207.2 g/mol
Mass = 4.3×10⁻³ mol × 207.2 g/mol
Mass = 890.96 g
2) Given data:
Number of atoms of antimony = 3.8×10²² atoms
Mass of antimony = ?
Solution:
1 mole contain 6.022 ×10²³ atoms
3.8×10²² atoms × 1 mol / 6.022 ×10²³ atoms
0.63×10⁻¹ mol
0.063 mol
Mass = number of moles × molar mass
Molar mass of lead = 121.76 g/mol
Mass = 0.063 mol × 121.76 g/mol
Mass = 7.67 g
3) Given data:
Mass of tungsten = 15.5 Kg (15.5 kg × 1000 g/ 1kg = 15500 g)
Number of atoms = ?
Solution:
Number of moles of tungsten:
Number of moles = mass/molar mass
Number of moles = 15500 g / 183.84 g/mol
Number of moles = 84.3 mol
1 mole contain 6.022 ×10²³ atoms
84.3 mol × 6.022 ×10²³ atoms / 1mol
507.65 ×10²³ atoms
Answer:
T = 377.2 K, Less than
Explanation:
The thermodynamic quantity used in predicting whether a reaction is spontaneous or not is the gibbs free energy.
It's relationship with ΔH⁰ and ΔS⁰ is given as;
ΔG° = ΔH° - TΔS°
Basically, a negative value of ΔG° means the reaction is spontaeneous.
To obtain the calculated vale of T,
ΔS° = ΔH°/T
T = ΔH° / ΔS°
T = 377.2 K
Let's calculate the value of ΔG° at that temperature.
ΔG° = ΔH° - TΔS°
ΔG° = − 46700 - 377.2(− 123.8)
ΔG° = 0 (approximately, values are due to the rounding off)
At ΔG° = 0 the reaction is at equilibrium.
To find if the reaction is spontaneous at lower or hugher temperature than the calculated temperature, we would be substituting the value of T with a smaller (random) value and also a larger (random) value.
Larger T (390K)
ΔG° = ΔH° - TΔS°
ΔG° = − 46700 - 390(− 123.8)
ΔG° = - 46700 + 48,282
ΔG° = 1582 J/mol
Smaller T (350K)
ΔG° = ΔH° - TΔS°
ΔG° = − 46700 - 350(− 123.8)
ΔG° = - 46700 + 43330
ΔG° = -3370J/mol
This means the temperature would be lesser than the calculated value for it to be spontaneus.
Answer:
1. ![K_eq = [Ca^{2+][OH^-]^2 = K_{sp}](https://tex.z-dn.net/?f=K_eq%20%3D%20%5BCa%5E%7B2%2B%5D%5BOH%5E-%5D%5E2%20%3D%20K_%7Bsp%7D)
2. a. No effect;
b. Products;
c. Products;
d. Reactants
Explanation:
1. Equilibrium constant might be written using standard guidelines:
- only aqueous species and gases are included in the equilibrium constant excluding solids and liquids;
- the constant involves two parts: in the numerator of a fraction we include the product of the concentrations of products;
- the denominator includes the product of the concentrations of reactants;
- the concentrations are raised to the power of the coefficients in the balanced chemical equation.
Based on the guidelines, we have two ions on the product side, a solid on the left side. Thus, the equilibrium constant has the following expression:
![K_eq = [Ca^{2+][OH^-]^2 = K_{sp}](https://tex.z-dn.net/?f=K_eq%20%3D%20%5BCa%5E%7B2%2B%5D%5BOH%5E-%5D%5E2%20%3D%20K_%7Bsp%7D)
2. a. In the following problems, we'll be considering the common ion effect. According to the principle of Le Chatelier, an increase in concentration of any of the ions would shift the equilibrium towards the formation of our precipitate.
In this problem, we're adding calcium carbonate. It is insoluble, so it wouldn't have any effect on the equilibrium.
b. Sodium carbonate is completely soluble, it would release carbonate ions. The carbonate ions would combine with calcium cations and more precipitate would dissolve. This would shift the equilibrium towards formation of the products to reproduce the amount of calcium cations.
c. HCl would neutralize calcium hydroxide to produce calcium chloride and water, so the amount of calcium ions would increase, therefore, the products are favored.
d. NaOH contains hydroxide anions, so we'd have a common ion. An increase in hydroxide would produce more precipitate, so our reactants are favored.
Answer:
It depends on what type of environment you are looking for. If you are looking for a warmer climate, warm weather and temperature is important. If you are looking for a cooler climate, you should look for colder weather and temperature. Humidity, geographical location, plant growth and foliage and elevation are also important when looking for a place to vacation.
Explanation:
Answer:
CO contains polar covalent bond, because these atoms share unequal electrons.