Answer:
Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.
Explanation:
As a PC board designer, I would sometimes spend a certain amount of time making traces have shorter routes, or fewer layer changes or bends. (I wanted to make the layout "pretty.") In some cases, these changes are superficial, affecting the appearance only. In some cases, they are functional, reducing crosstalk or emissions or susceptibility to interference.
I deal with a web site that seems to be changing all the time (Brainly). In many cases, the same information is rearranged on the page—a superficial change. In other cases, the information being displayed changes, or the way that certain information is accessed changes. These are functional changes. (Sometimes, they "enhance performance," and sometimes they don't, IMO.)
In short ...
<em>Superficial design improvements are typically only trivial changes to a design, while functional design improvements can change the way a product or process is used to significantly enhance performance.</em>
Answer:
a. 6 seconds
b. 180 feet
Explanation:
Images attached to show working.
a. You have the position of the truck so you integrate twice. Use the formula and plug in the time t = 7 sec. Check out uniform acceleration. The time at which the truck's velocity is zero is when it stops.
b. Determine the initial speed. Plug in the time calculated in the previous step. From this we can observe that the truck comes to a stop before the end of the ramp.
Answer:
Maximum number that can be represented by 13 bits is 8192 Instructions
Explanation:
number of instructions = 1000
number of bits = log(1000) x number of register
= 6 bits
Since the complete instruction must have 32 bits, then
remaining number of bits = 32 - 6 = 236
number of registers in instruction = 2
number of bits per register = 26/2 = 13
Maximum number that can be represented by 13 bits = 
= 2¹³ = 8192
Answer:
h = 10,349.06 W/m^2 K
Explanation:
Given data:
Inner diameter = 3.0 cm
flow rate = 2 L/s
water temperature 30 degree celcius




at 30 degree celcius 

Re = 106390
So ,this is turbulent flow



SOLVING FOR H
WE GET
h = 10,349.06 W/m^2 K
Answer:
a)
, b)
Explanation:
a) The Reynolds number for the water flowing in a circular tube is:

Let assume that density and dynamic viscosity at 25 °C are
, respectively. Then:


b) The result is:
