Answer:
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
Explanation:
Load and Resistance Factor Design
there are 7 basic load combination of LRFD that is
1) 1.4(D + F)
2) 1.2(D + F + T) + 1.6(L + H) + 0.5(Lr or S or R)
3) 1.2D + 1.6(Lr or S or R) + ((0.5 or 1.0)*L or 0.8W)
4) 1.2D + 1.6W + (0.5 or 1.0)*L + 0.5(Lr or S or R)
5) 1.2D + 1.0E + (0.5 or 1.0)*L + 0.2S
6) 0.9D + 1.6W + 1.6H
7) 0.9D + 1.0E + 1.6H
and
here load factor for L given ( * ) mean it is permitted = 0.5 for occupancies when live load is less than or equal to 100 psf
here
D is dead load and L is live load
E is earth quake load and S is snow load
W is wind load and R is rain load
Lr is roof live load
Answer:
The AGC circuit operates with an input voltage range of 60 dB (5 mV p-p to 5 V p-p), with a fixed output voltage of 250 mV p-p.
Explanation:
The change in annual cost when Q is increased from 340 to 341 is -1.23 and the instantaneous rate of change when Q = 340 is -1.25
<h3>How to find the Instantaneous rate of change?</h3>
The annual inventory cost C for a manufacturer is given as;
C = (1012000/Q) + 7.5Q
where Q is the order size when the inventory is replenished.
Now, the change in C can be calculated by evaluating the cost function at Q = 340 and Q = 341
Change in C = [1,012,000/341 + 7.5*341] - [1,012,000/340 + 7.5*340] ≈ -1.23
Instantaneous rate of change in C is first order derivative C':
C'(Q) = -1,012,000/(Q²) + 7.5
C'(340) = -1,012,000/(340²) + 7.5 ≈ -1.25
Read more about Instantaneous rate of change at; brainly.com/question/14666106
#SPJ1
Answer:
8861.75 m approximately 8862 m
Explanation:
We need to remember Newton's 2nd Law which says that the force experienced by an object is proportional to his acceleration and that the constant of proportionality between those two vectors correspond to the mass of the object.
for the weight of an object (which is a force) we have that the acceleration experienced by that object is equal to the gravitational acceleration, obtaining that 
For simplicity we work with
despiting the effect of the height above sea level. In this problem, we've been asked by the height above sea level that makes the weight of an object 0.30% more lighter.
In accord with the formula
the "normal" or "standard" weight of an object is given by
when
, so we need to find the value of
that makes
meaning that the original weight decrease by a 0.30%, so now we operate...
now we group like terms on the same sides
we cancel equal tems on both sides and obtain that 
A is the answer for the sentence