Answer:
- The resistance of the circuit is 1250 ohms
- The inductance of the circuit is 0.063 mH.
Explanation:
Given;
current at resonance, I = 0.2 mA
applied voltage, V = 250 mV
resonance frequency, f₀ = 100 kHz
capacitance of the circuit, C = 0.04 μF
At resonance, capacitive reactance (
) is equal to inductive reactance (
),
Where;
R is the resistance of the circuit, calculated as;

The inductive reactance is calculated as;

The inductance is calculated as;

Answer:
810 g
Explanation:
Mass is the product of density and volume:
m = ρV
m = (8.1 g/cm³)(100 cm³) = 810 g
The mass of the chunk is 810 grams.
Answer:
Vab = 80V
Explanation:
The only current flowing in the circuit is supplied by the 100 V source. Its only load is the 40+60 ohm series circuit attached, so the current in that loop is (100V)/(40+60Ω) = 1A. That means V1 = (1A)(60Ω) = 60V.
Vab will be the sum of voltages around the right-side "loop" between terminals 'a' and 'b'. It is (working clockwise from terminal 'b') ...
Vab = -10V +60V +(0A×10Ω) +30V
Vab = 80V