Answer: 6117.58 J
Explanation:
We know that W=Fd*cos(theta) where theta is the angle between the displacement and the force.
In this case, we are given that F=225 N, d=30 m, and theta=25 degrees.
Plugging all this in we get
W=225*30*cos(25)=6117.58 J
The speed of the roller coater at the bottom of the hill is 31 m/s.
<h3>
Speed of the roller coater at the bottom of the hill</h3>
Apply the principle of conservation of mechanical energy as follows;
K.E(bottom) = P.E(top)
¹/₂mv² = mgh
v² = 2gh
v = √2gh
where;
- v is the speed of the coater at bottom hill
- h is the height of the hill
- g is acceleration due to gravity
v = √(2 x 9.8 x 49)
v = 31 m/s
Thus, the speed of the roller coater at the bottom of the hill is 31 m/s.
Learn more about speed here: brainly.com/question/6504879
#SPJ1
Power dissipation = (voltage across the component)² / (resistance of the component)
Since the resistance is in the denominator of the fraction in this formula for the
quantity of power dissipated, you can see that when the supply voltage is constant,
the smaller resistance dissipates more power.
So the <u>60w bulb</u> has lower resistance than the 40w bulb.
Answer: b
Explanation: the two pieces will repel as both have obtained a static charge.