Take note of the reaction formula which is PCl5=Cl2+PCl3.
The Keq = [Cl2] * [PCl3] / [PCl5]=2.24*10^-2.
For the reason that the volume is 1 liter, the concentration of Cl2 will be computed through: <span>(2.24 * 10^-2) * 0.235 / 0.174 </span> = 0.0303 mol/L is the answer.
Answer:
(B) The total internal energy of the helium is 4888.6 Joules
(C) The total work done by the helium is 2959.25 Joules
(D) The final volume of the helium is 0.066 cubic meter
Explanation:
(B) ∆U = P(V2 - V1)
From ideal gas equation, PV = nRT
T1 = 21°C = 294K, V1 = 0.033m^3, n = 2moles, V2 = 2× 0.033=0.066m^3
P = nRT ÷ V = (2×8.314×294) ÷ 0.033 = 148140.4 Pascal
∆U = 148140.4(0.066 - 0.033) = 4888.6 Joules
(C) P2 = P1(V1÷V2)^1.4 =148140.4(0.033÷0.066)^1.4= 148140.4×0.379=56134.7 Pascal
Assuming a closed system
(C) Wc = (P1V1 - P2V2) ÷ 0.4 = (148140.4×0.033 - 56134.7×0.066) ÷ 0.4 = (4888.6 - 3704.9) ÷ 0.4 = 1183.7 ÷ 0.4 = 2959.25 Joules
(C) Final volume = 2×initial volume = 2×0.033= 0.066 cubic meter
The equilibrium temperature of aluminium and water is 33.2°C
We know that specific heat of aluminium is 0.9 J/gm-K, and that of water is 1 J/gm-K
Now we can calculate the equilibrium temperature
(mc∆T)_aluminium=(mc∆T)_water
15.7*0.9*(53.2-T)=32.5*1*(T-24.5)
T=33.2°C
1. Physical size of Russia compared to other countries, despite a lack of visible borders from space.
2. Part of Russia's outline would likely be obscured by the various clouds and objects in the stratosphere; this would allow the astronaut to view potential cloud and weather patterns on earth.
3. An astronaut could see outlines of Russia's geography such as mountain ranges.
Hope that it helps :)
Answer:
t = 1.42 s and d = 35.5 m
Explanation:
Given that,
Velocity of a roadrunner is 25 m/s
A certain coyote wants to capture the roadrunner using a net dropped from an overpass that is 10 m high.
We need to find the time before the roadrunner is under the overpass and how far away from the overpass is the roadrunner when the coyote drops the net.

Let d is the distance traveled. So,
d = vt
d = 25 m/s × 1.42 s
d = 35.5 m