1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Paladinen [302]
2 years ago
10

An infinitely long line charge of uniform linear charge density λ = -3.00 µC/m lies parallel to the y axis at x = -3.00 m. A poi

nt charge of 3.00 µC is located at x = 1.00 m, y = 2.00 m. Find the electric field at x = 2.00 m, y = 1.50 m.
Physics
1 answer:
liq [111]2 years ago
7 0

Answer:

E=[8.1X-9.63Y]*10^{3}N/m

Explanation:

Field in the point is the sum of the point charge electric field and the field of the infinite line.

First, we calculate the point charge field:

E_{Charge}=\frac{1}{4\pi \epsilon_0}  *\frac{Q}{||r_p -r||^2} *Unitary vector\\||r_p -r||^2=(x_p-x)^2+(y_p -y)^2=1.25 m^2\\Unitary Vector=\frac{(r_p -r)}{||r_p -r||}=\frac{(x_p-x)X+(y_p -y)Y}{||r_p -r||}\\=\frac{2\sqrt{5} }{5}X- \frac{\sqrt{5} }{5}Y \\E_{Charge}=K*\frac{3\mu C}{1.25m^2}*(\frac{2\sqrt{5} }{5}X- \frac{\sqrt{5} }{5}Y)

It is vectorial, where <em>X</em> and <em>Y</em> represent unitary vectors in <em>X</em> and <em>Y</em>. we recall the Coulomb constant <em>k=</em>\frac{1}{4\pi \epsilon_0} and not replace it yet. Now we compute the line field as follows:

E_{Line}=\frac{\lambda}{2\pi \epsilon_0 distance} *Unitary Vector\\Unitary Vector=X (The field is only in the perpendicular direction to the wire, which is X)

E_{Line}=\frac{-3\mu C/m*2}{2*2\pi \epsilon_0 5*m}X=K*\frac{6\mu C/m}{ 5*m}(-X)

We multiplied by 2/2 in order to obtain Coulomb constant and express it that way. Finally, we proceed to sum the fields.

E=K*\frac{3\mu C}{1.25m^2}*(\frac{2\sqrt{5} }{5}X- \frac{\sqrt{5} }{5}Y)+K*\frac{6\mu C}{ 5*m^2}(-X)\\E=K*[2.15-1.2]X-K*[1.07]Y \mu N/m\\E=K*[0.9X-1.07Y] \mu C/m^2\\E=[8.1X-9.63Y]*10^{3}N/m

You might be interested in
Which substance might lead to potentially addiction if abuse
uranmaximum [27]
Heroin is the number 1 most addictive substance.
4 0
3 years ago
Read 2 more answers
The elastic energy stored in your tendons can contribute up to 35% of your energy needs when running. Sports scientists have stu
Anni [7]

Answer:

ΔE = 9.7mJ

Explanation:

See attachment below.

7 0
3 years ago
For Part A, Sebastian decided to use the copper cylinder. How would the magnitude of his q and ∆H compare if he were to redo Par
Vitek1552 [10]

The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

The given parameters;

  • <em>initial temperature of metals, =  </em>T_m<em />
  • <em>initial temperature of water, = </em>T_i<em> </em>
  • <em>specific heat capacity of copper, </em>C_p<em> = 0.385 J/g.K</em>
  • <em>specific heat capacity of aluminum, </em>C_A = 0.9 J/g.K
  • <em>both metals have equal mass = m</em>

The quantity of heat transferred by each metal is calculated as follows;

Q = mcΔt

<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_p = (m_wc_w + m_pc_p)(T_m - T_i)\\\\Q_p = (T_m - T_i)(m_wc_w ) + (T_m - T_i)(m_pc_p)\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m_p(T_m - T_i)\\\\m_p = m\\\\Q_p = (T_m - T_i)(m_wc_w ) + 0.385m(T_m - T_i)\\\\let \ (T_m - T_i)(m_wc_w )  = Q_i, \ \ \ and \ let \ (T_m- T_i) = \Delta t\\\\Q_p = Q_i + 0.385m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

\Delta H = Q_p - Q_i\\\\\Delta H = (Q_i + 0.385m \Delta t) - Q_i\\\\\Delta H = 0.385 m \Delta t

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

Q_A = (m_wc_w + m_Ac_A)(T_m - T_i)\\\\Q_A = (T_m -T_i)(m_wc_w) + (T_m -T_i) (m_Ac_A)\\\\let \ (T_m -T_i)(m_wc_w)  = Q_i, \ and \ let (T_m - T_i) = \Delta t\\\\Q_A = Q_i \ + \ m_Ac_A\Delta t\\\\m_A = m\\\\Q_A = Q_i \ + \ 0.9m\Delta t

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

\Delta H = Q_A - Q_i\\\\\Delta H = (Q_i + 0.9m\Delta t) - Q_i\\\\\Delta H = 0.9m\Delta t

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.

Learn more here:brainly.com/question/15345295

6 0
2 years ago
Jackie rides her bike to school every day and enjoys playing beach volleyball on weekends. She also helps with tasks around the
Alinara [238K]

Answer:

The correct answer is - C) Jackie may maintain healthy body fat levels.

Explanation:

Jackie has a very active daily and on weekends routine that includes riding the bike, playing volleyball, pushing weeds, and sweeping the porch. The activities that Jackie is performing daily as well as the time that she spends on exercise may help her to maintain body fat levels.

Being physically active helps in maintaining fat levels in the body of an individual, and it is healthy for the individual.

Thus, the correct answer is - C) Jackie may maintain healthy body fat levels.

6 0
2 years ago
A cart falls from a track with an acceleration of 10 m/s2 (which is always the acceleration due to gravity). If it falls for 9 s
schepotkina [342]

Answer:

90m/s

Explanation:

Given parameters:

Acceleration  = 10m/s²

Time of fall  = 9s

Unknown:

Final velocity  = ?

Solution:

We can assume that the cart falls from rest.

   Initial velocity  = 0m/s

Using

        v  = u + gt

v is the final velocity

u is the initial velocity

g is the acceleration due to gravity

t is the time

       v  = 0 + 10 x 9  = 90m/s

8 0
2 years ago
Other questions:
  • Three balloons are inflated to the same size. The three balloons are submerged in buckets filled with ice water, tap water and w
    8·2 answers
  • The image shows a roller coaster.
    10·1 answer
  • A hot air balloon is traveling vertically upward at a constant speed of 4.5 m/s. When it is 28 m above the ground, a package is
    8·1 answer
  • The velocity of in water is 1500 m/s.
    5·1 answer
  • can the suns gravitational pull on the earth affect the temperature as the gravitational pull could suck us in like a black hole
    7·1 answer
  • A 2.00 kg block hangs from a spring balance calibrated in Newtons that is attached to the ceiling of an elevator.(a) What does t
    14·1 answer
  • An object attached to an ideal spring oscillates with an angular frequency of 2.81 rad/s. the object has a maximum displacement
    12·1 answer
  • What is the force acting on a boulder with a mass of 10 kg and an acceleration of 2 m/s/s?
    10·1 answer
  • Which is a property of every<br> mixture?
    10·1 answer
  • A flashlight bulb with a 6.00 resistor uses 18.0W of power. What is the current through the bulb
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!