Williamson synthesis is the most common way for obtaining ethers, called after its developer Alexander Williamson. It is an organic reaction of forming ethers from an organohalide and an alkoxide. The reaction is carried out according to the SN2 mechanism.
On the attached picture it is shown required alkoxide ion, <span>alkyl(aryl)bromide and the ether that forms from the reactants. </span>
Answer:
oxidation:Ti to Ti Reduction:O2 toO2
Explanation:
<em>oxidation loses electron while Reduction gains electron</em>
Oxygen carbon and hydrogen
<span>Begin by classifying which energy level, and indirectly principal quantum number, n, resembles to the N shell.
no. of orbitals =n2
In your case, the fourth energy level will contain
n=4⇒no. of orbitals= 4^2=16
The number of subshells is given by the principal quantum number.
no. of subshells=n
In your case, the fourth energy level will have
no. of subshells = 4 this is the answer
to check:
the fourth energy shell will can hold a thoroughgoing of no. of electrons=2⋅42=32 e−</span>
Answer:
I don't know 100% but im pretty sure its electrons, if im wrong im really sorry let me know in the comments ill change it
explanation
the nucleus has more weight but its more compact but the electrons are spread apart circling the nucleus and therefor take up more space