Answer:
R (120) = 940Ω
Explanation:
The variation in resistance with temperature is linear in metals
ΔR (T) = R₀ α ΔT
where α is the coefficient of variation of resistance with temperature, in this case α = -0,0005 / ºC
let's calculate
ΔR = 1000 (-0,0005) (120-0)
ΔR = -60
Ω
ΔR = R (120) + R (0) = -60
R (120) = -60 + R (0)
R (120) = -60 + 1000
R (120) = 940Ω
Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft
Explanation:
1. use the position (x) equation in parobolic movement to find the time (t)
565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°) * t
t= 3.92 s
2. use the position (y) equation in parabolic movement to find de maximun heigth the ball reaches at 565 ft from the home plate.
y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - 
y= 148.32 ft
3. finally add the 3 ft that exist between the home plate and the ball
148.32 ft + 3 ft = 151.32
(a) The work done by the applied force is 26.65 J.
(b) The work done by the normal force exerted by the table is 0.
(c) The work done by the force of gravity is 0.
(d) The work done by the net force on the block is 26.65 J.
<h3>
Work done by the applied force</h3>
W = Fdcosθ
W = 14 x 2.1 x cos25
W = 26.65 J
<h3>
Work done by the normal force</h3>
W = Fₙd
W = mg cosθ x d
W = (2.5 x 9.8) x cos(90) x 2.1
W = 0 J
<h3>Work done force of gravity</h3>
The work done by force of gravity is also zero, since the weight is at 90⁰ to the displacement.
<h3> Work done by the net force on the block</h3>
∑W = 0 + 26.65 J = 26.65 J
Thus, the work done by the applied force is 26.65 J.
The work done by the normal force exerted by the table is 0.
The work done by the force of gravity is 0.
The work done by the net force on the block is 26.65 J.
Learn more about work done here: brainly.com/question/8119756
#SPJ1
Answer:
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Explanation:
As we know that
According to Wien's law wavelength is inverse proportional to the temperature .
λ.T = Constant.
λ.∝ 1 /T
As we know that star radiates wavelength and this wavelength is inverse proportional to the temperature of the star.
The temperature of cool star is cooler than the temperature of hot star that is cool star looks red and hot star looks blue.Cool star have low energy and hot star have high energy.
So option B is correct.
(B) The wavelength that a star radiates the most energy is inversely proportional to the temperature.
Answer:
Explained below
Explanation:
To explain this, let's consider a tennis ball being launched from the top of a very high building.
Now, if the tennis ball is launched horizontally without any upward angle but with an initial velocity of 10 m/s. In this motion, If there is no gravity, the tennis ball would continue in motion at that same speed of 10 m/s in the horizontal direction. However, in reality, gravity causes the tennis ball to accelerate downwards at a rate of 9.8 m/s for every second. This implies that the vertical velocity component is changing at the rate of 9.8 m/s every second.
Thus, after 1 second, horizontal velocity component will remain 10 m/s and vertical component will be 9.8 m/s × 1 = 9.8 m/s downwards.
Also, after 2 seconds, the vertical velocity component will remain 10 m/s, however the vertical component will now be 9.8 × 2 = 19.6 m/s downwards.
Same procedure is repeated as t increases by 1 second.