1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
emmasim [6.3K]
3 years ago
5

Describe J.J Thomson's plum pudding model,and explain how it compares to the modern day atomic theory.​

Physics
2 answers:
juin [17]3 years ago
8 0

The correct answer to this open question is the following.

The J.J Thomson's plum pudding model establishes that when he researched the atom, he found that electrons are positively charged. Because he observed that electrons were embedded like plums. Electrons are negative. However, compared to the modern-day atomic theory, scientist Ernest Rutherford established that the space between an atom is empty, the nucleus of the atom is positive, and negative electrons have fixed motion paths.

natita [175]3 years ago
4 0

Answer:

J J Thomson's plum pudding model indicated that <em>the negative electrons represented the raisins in the pudding and the dough contained the positive charge.</em>

Explanation:

Thomson discovered electron in 1897 and demonstrated that cathode rays were negatively charged. In addition, he also studied positively charged particles in neon gas. Thomson realized that the accepted model of an atom did not account for negatively or positively charged particles. Therefore, he proposed a model of the atom which he likened to plum pudding.  The model indicate that

<em>The negative electrons represented the raisins in the pudding and the dough contained the positive charge. </em>

Thomson's model of the atom did explain some of the electrical properties of the atom due to the electrons, but failed to recognize the positive charges in the atom as particles.

<em>The current model indicate the presence of the  a positively charged center of the atom that is denser than the rest of it called the nucleus. This dense center is made up of positively charged protons and neutrally charged neutrons. Around the outside of the nucleus the electrons are organized on rings. These electrons are arranged in  a certain pattern that is the same for all atoms.</em>

You might be interested in
As part of a safety investigation, two 1900 kg cars traveling at 20 m/s are crashed into different barriers. Part A Find the ave
DedPeter [7]

Answer:

-29.2\times 10^{3} N

Explanation:

We are given that

Mass of cars= m=1900 kg

Initial speed of car=u=20 m/s

Final speed of car=v=0

Time=\Delta t=1.3 s

We have to find the average force exerted on the car.

Average force=\frac{change\;in\;momentum}{\Delta t}

F_{avg}=\frac{mv-mu}{1.3}

F_{avg}=\frac{1900(0)-1900(20)}{1.3}

F_{avg}=\frac{-38000}{1.3}=-29.2\times 10^{3} N

Hence, the average force exerted on the car that hits a line of water barrels=-29.2\times 10^{3} N

8 0
3 years ago
Is a iron a conduction , raidition or convection
Masja [62]

conduction sdnoajndsojnfojanskfnijoaknfibas

3 0
3 years ago
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
Inertia is the resistance to change in motion so inertia depends solely on what
Alex Ar [27]
Inertia depends on mass, the more mass the more inertia.
6 0
3 years ago
if you push a box a distance of 2000 meters with a force of 1 newton, how many calories have you used
kap26 [50]
Note that
1 J = 0.239 cal

By definition,
Work = Force x Distance

Therefore work done is
W = (1 N)*(2000 m) = 2000 J

In calories,
W = (2000 J)*(0.239 cal/J) = 478 cal

Answer: 478 calories

4 0
3 years ago
Other questions:
  • A rocket is launched at the rate of 11 feet per second from a point on the ground 15 feet from an observer. to 2 decimal places
    9·2 answers
  • -) Given that 1 inch = 0.0254 m, 1 mile = 1760 yards and 1 yard = 36 inches. Convert 5
    6·1 answer
  • Does any one know the answer
    10·1 answer
  • How do you find density of a regular solid?
    10·1 answer
  • A potter’s wheel of radius 17 cm starts from rest and rotates with constant angular acceleration until at the end of 32 s it is
    5·1 answer
  • Gases have an indefinite shape and volume
    10·1 answer
  • What is the outcome of a star that runs out of hydrogen
    15·1 answer
  • ..Psychology Help Please!
    9·1 answer
  • Which example best demonstrates how unbalanced forces change the speed of an object's motion?
    5·1 answer
  • A plane wave has equation; y= 25sin(120 _4x).find the: (1)wave length (2)wave velocity (3)frequency and period of the wave
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!