Answer:
2.72 m/s
Explanation:
In 3 meters a person running 0.5 m/s accelerates 1.2 m/s².
It means,
Distance, s = 3 m
Initial velocity, u = 0.5 m/s
Acceleration, a = 1.2 m/s²
We need to find the final velocity of the person. Using equation of motion to find it as follows :

So, the final velocity of the person is 2.72 m/s.
Answer:1.55 times
Explanation:
Given
First wavelength
Second wavelength
According wien's diplacement law

where 
T=Temperature
Let
be the temperatures corresponding to
respectively.



Thus object with
is 1.55 times hotter than object with wavelength 
I agree with the other comment
Answer:
Tycho Brahe
Explanation:
Tycho Brahe's accurate observations of planetary positions provided the data used by Johannes Kepler to derive his three fundamental laws of planetary motion.
Answer: coefficient of static friction
= 0.31
Explanation: Since they negotiate the curve without skidding, the frictional force (F1) equals the centripetal force (F2).
F1= uN
F2 = M*(v²/r)
M is the combined mass 450kg
V is the velocity 18m/s
r is the radius 106m
N is the normal reaction 4410N
u is the coefficient of static friction
Making u subject of the formula we have that,
u = {450*(18²/106)} /4410
=1375.47/4410
=0.31
NOTE: coefficient of friction is dimensionless. It as no Unit.