<span>M(HCl) * </span><span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(<span>NaO<span>H)
</span></span></span>
M(HCl) = 0.35
<span>V(HCl) = 45mL
</span>M(NaOH)= 0.35
now, solne for V(NaOH) by putting these values in the above equation.
M(HCl) * <span>V(HCl) </span>= <span>M(NaOH) * </span><span>V(NaOH)</span>
<span>0.35 * 45 = 0.35 * V(NaOH)</span>
<span>V(NaOH) = 45 mL</span>
Answer:
Hydrogen Bonding
Explanation:
Formaldehyde, H2CO, has an oxygen atom which is quite electronegative that means it would attract any atom with a slightly positive charge. Hydrogen in the Hydrogen sulfide (H2S) is attracted by oxygen and hence hydrogen bonding can occur.
M/sec = 112 km / 1 hr / 1 min / 1000 meters
hr / 60 min / 60 sec / 1 km
So the answer is = 31.1 meters/sec
Answer:
Notice that the number of atoms of
K
and
Cl
are the same on both sides, but the numbers of
O
atoms are not. There are 3
O
atoms on the the left side and 2 on the right. 3 and 2 are factors of 6, so add coefficients so that there are 6
O
atoms on both sides.
2KClO
3
(
s
)
+ heat
→
KCl(s)
+
3O
2
(
g
)
Now the
K
and
Cl
atoms are not balanced. There are 2 of each on the left and 1 of each on the right. Add a coefficient of 2 in front of
KCl
.
2KClO
3
(
s
)
+ heat
→
2KCl(s)
+
3O
2
(
g
)
The equation is now balanced with 2
K
atoms,
Yes the answer is 1s22s22p63s23p64s23d5