1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
8

Which of the following has the same unit as the moment of force?

Physics
2 answers:
saw5 [17]3 years ago
6 0

Answer:

Work

Explanation:

Units are

kg {m}^{2}  {s}^{ - 2}  = newtons \times meter

Scilla [17]3 years ago
4 0
The answer is b- work
You might be interested in
Which of the following actions would decrease the energy stored in a parallel plate capacitor when a constant potential differen
Debora [2.8K]

Answer:

increasing the separation between the plates

Explanation:

The increase in the vacuum/separation between the plates in a parallel plate capacitor connected to a constant potential difference decreases the energy stored in the capacitor. the increase in the separation of the plates of a parallel plate capacitor reduces the capacitance of the capacitor because

Q(charge) = CV  V = VOLTAGE , c = capacitance  

E = 1/2 eAV^2/ D  ( ENERGY STORED )

where D = distance between plates, e = dielectric, A = area of capacitor , V = potential difference

6 0
3 years ago
Derive Isothermal process through ideal gas.(anyone plzz!!)​
zysi [14]

Answer:

Hey, bro here is the explanation....

Explanation:

Hope it helps...

8 0
3 years ago
On February 15, 2013, a superbolide meteor (brighter than the Sun) entered Earth's atmosphere over Chelyabinsk, Russia, and expl
fredd [130]

Answer:

156.67 m/s

0.45676 times the speed of sound

Explanation:

Distance from the ground = 23.5 km = 23500 m

Time taken by the blast waves to reach the ground = 2\ minutes\ 30\ seconds=2\times 60+30=150\ s

Spedd of the wave would be

Speed=\dfrac{Distance}{Time}\\\Rightarrow v_b=\dfrac{23500}{150}\\\Rightarrow v-b=156.67\ m/s

The velocity of the blast wave is 156.67 m/s

v = Velocity of sound = 343 m/s

\dfrac{v_b}{v}=\dfrac{156.67}{343}\\\Rightarrow v_b=v\dfrac{156.67}{343}\\\Rightarrow v_b=0.45676v

The blast wave is 0.45676 times the speed of sound

7 0
4 years ago
Which of the following never cause a change in the motion of an object? A. Net forces B. Unbalanced forces O C. Balanced forces
Karolina [17]

Answer:

balanced force never changes its motion

5 0
3 years ago
What change in entropy occurs when a 0.15 kg ice cube at -18 °C is transformed into steam at 120 °c 4.
Studentka2010 [4]

<u>Answer:</u> The change in entropy of the given process is 1324.8 J/K

<u>Explanation:</u>

The processes involved in the given problem are:

1.)H_2O(s)(-18^oC,255K)\rightarrow H_2O(s)(0^oC,273K)\\2.)H_2O(s)(0^oC,273K)\rightarrow H_2O(l)(0^oC,273K)\\3.)H_2O(l)(0^oC,273K)\rightarrow H_2O(l)(100^oC,373K)\\4.)H_2O(l)(100^oC,373K)\rightarrow H_2O(g)(100^oC,373K)\\5.)H_2O(g)(100^oC,373K)\rightarrow H_2O(g)(120^oC,393K)

Pressure is taken as constant.

To calculate the entropy change for same phase at different temperature, we use the equation:

\Delta S=m\times C_{p,m}\times \ln (\frac{T_2}{T_1})      .......(1)

where,

\Delta S = Entropy change

C_{p,m} = specific heat capacity of medium

m = mass of ice = 0.15 kg = 150 g    (Conversion factor: 1 kg = 1000 g)

T_2 = final temperature

T_1 = initial temperature

To calculate the entropy change for different phase at same temperature, we use the equation:

\Delta S=m\times \frac{\Delta H_{f,v}}{T}      .......(2)

where,

\Delta S = Entropy change

m = mass of ice

\Delta H_{f,v} = enthalpy of fusion of vaporization

T = temperature of the system

Calculating the entropy change for each process:

  • <u>For process 1:</u>

We are given:

m=150g\\C_{p,s}=2.06J/gK\\T_1=255K\\T_2=273K

Putting values in equation 1, we get:

\Delta S_1=150g\times 2.06J/g.K\times \ln(\frac{273K}{255K})\\\\\Delta S_1=21.1J/K

  • <u>For process 2:</u>

We are given:

m=150g\\\Delta H_{fusion}=334.16J/g\\T=273K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 334.16J/g}{273K}\\\\\Delta S_2=183.6J/K

  • <u>For process 3:</u>

We are given:

m=150g\\C_{p,l}=4.184J/gK\\T_1=273K\\T_2=373K

Putting values in equation 1, we get:

\Delta S_3=150g\times 4.184J/g.K\times \ln(\frac{373K}{273K})\\\\\Delta S_3=195.9J/K

  • <u>For process 4:</u>

We are given:

m=150g\\\Delta H_{vaporization}=2259J/g\\T=373K

Putting values in equation 2, we get:

\Delta S_2=\frac{150g\times 2259J/g}{373K}\\\\\Delta S_2=908.4J/K

  • <u>For process 5:</u>

We are given:

m=150g\\C_{p,g}=2.02J/gK\\T_1=373K\\T_2=393K

Putting values in equation 1, we get:

\Delta S_5=150g\times 2.02J/g.K\times \ln(\frac{393K}{373K})\\\\\Delta S_5=15.8J/K

Total entropy change for the process = \Delta S_1+\Delta S_2+\Delta S_3+\Delta S_4+\Delta S_5

Total entropy change for the process = [21.1+183.6+195.9+908.4+15.8]J/K=1324.8J/K

Hence, the change in entropy of the given process is 1324.8 J/K

4 0
3 years ago
Other questions:
  • How much is one degree Celsius in temperature change ?
    9·1 answer
  • An ideal photo-diode of unit quantum efficiency, at room temperature, is illuminated with 8 mW of radiation at 0.65 µm wavelengt
    11·1 answer
  • At an instant when the displacement is equal to a/2, what fraction of the total energy of the system is potential?
    5·1 answer
  • Wires diameters are usually specified by a number called the gauge. The smaller gauge wire has a larger diameter. For example, a
    11·1 answer
  • A 16.0 Ω, 13.0 Ω, and 7.00 Ω resistor are connected in parallel to an emf source. A current of 6.00 A is in the 13.0 Ω resistor.
    15·2 answers
  • The primary difference between a barometer and a manometer is
    11·1 answer
  • Problem 1 The Van de Graaff electrostatic generator develops a charge of approximately −1 × 10−5C and a pith ball has charge of
    7·1 answer
  • Question 25
    13·1 answer
  • Given a force of 100 N and an acceleration of 5 m/s2, what is the mass
    12·2 answers
  • Assume your mass is 84 kg. The acceleration due to gravity is 9.8 m/s 2 . How much work against gravity do you do when you climb
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!