Water and h20 delivery have been a very meaningful company to the community
Answer:
The wavelength is 754.2 nm.
Explanation:
Given that,
Diffraction pattern y= 1.35 mm
Width = 0.838 mm
Distance D= 75 cm
We need to calculate the wavelength
Using formula of diffraction pattern


Where, y = diffraction pattern
m = order
d = width
D = distance
Put the value into the formula



Hence, The wavelength is 754.2 nm.
Answer:
The value of the effective (rms) voltage of the applied source in the circuit is 132 V
Explanation:
Given;
effective (rms) voltage of the resistor,
= 65 V
effective (rms) voltage of the inductor,
= 140 V
effective (rms) voltage of the capacitor,
= 80 V
Determine the value of the effective (rms) voltage of the applied source in the circuit;

Therefore, the value of the effective (rms) voltage of the applied source in the circuit is 132 V.
Answer:
voltage ÷ resistance; therefore
20 ÷ 4 = 5 amps