To
determine the percent ionization of the acid given, we make use of the acid
equilibrium constant (Ka) given. It is the ration of the equilibrium
concentrations of the dissociated ions and the acid. The dissociation reaction
of the HF acid would be as follows:<span>
HF = H+ + F-
The acid equilibrum constant would be expressed as follows:
Ka = [H+][F-] / [HF] = 3.5 x 10-4
To determine the equilibrium concentrations we use the ICE table,
HF
H+ F-
I 0.337 0
0
C -x +x
+x
---------------------------------------------
E 0.337-x x
x
3.5 x 10-4 = [H+][F-] / [HF]
3.5 x 10-4 = [x][x] / [0.337-x] </span>
Solving for x,
x = 0.01069 = [H+] = [F-]
percent ionization = 0.01069 / 0.337 x 100 = 3.17%
Answer:
rate = k[A][B] where k = k₂K
Explanation:
Your mechanism is a slow step with a prior equilibrium:
![\begin{array}{rrcl}\text{Step 1}:& \text{A + B} & \xrightarrow [k_{-1}]{k_{1}} & \text{C}\\\text{Step 2}: & \text{C + A} & \xrightarrow [ ]{k_{2}} & \text{D}\\\text{Overall}: & \text{2A + B} & \longrightarrow \, & \text{D}\\\end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brrcl%7D%5Ctext%7BStep%201%7D%3A%26%20%5Ctext%7BA%20%2B%20B%7D%20%26%20%5Cxrightarrow%20%5Bk_%7B-1%7D%5D%7Bk_%7B1%7D%7D%20%26%20%5Ctext%7BC%7D%5C%5C%5Ctext%7BStep%202%7D%3A%20%26%20%5Ctext%7BC%20%2B%20A%7D%20%26%20%5Cxrightarrow%20%5B%20%5D%7Bk_%7B2%7D%7D%20%26%20%5Ctext%7BD%7D%5C%5C%5Ctext%7BOverall%7D%3A%20%26%20%5Ctext%7B2A%20%2B%20B%7D%20%26%20%5Clongrightarrow%20%5C%2C%20%26%20%5Ctext%7BD%7D%5C%5C%5Cend%7Barray%7D)
(The arrow in Step 1 should be equilibrium arrows).
1. Write the rate equations:
![-\dfrac{\text{d[A]}}{\text{d}t} = -\dfrac{\text{d[B]}}{\text{d}t} = -k_{1}[\text{A}][\text{B}] + k_{1}[\text{C}]\\\\\dfrac{\text{d[C]}}{\text{d}t} = k_{1}[\text{A}][\text{B}] - k_{2}[\text{C}]\\\\\dfrac{\text{d[D]}}{\text{d}t} = k_{2}[\text{C}]](https://tex.z-dn.net/?f=-%5Cdfrac%7B%5Ctext%7Bd%5BA%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-%5Cdfrac%7B%5Ctext%7Bd%5BB%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20-k_%7B1%7D%5B%5Ctext%7BA%7D%5D%5B%5Ctext%7BB%7D%5D%20%2B%20k_%7B1%7D%5B%5Ctext%7BC%7D%5D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BC%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B1%7D%5B%5Ctext%7BA%7D%5D%5B%5Ctext%7BB%7D%5D%20-%20k_%7B2%7D%5B%5Ctext%7BC%7D%5D%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7Bd%5BD%5D%7D%7D%7B%5Ctext%7Bd%7Dt%7D%20%3D%20k_%7B2%7D%5B%5Ctext%7BC%7D%5D)
2. Derive the rate law
Assume k₋₁ ≫ k₂.
Then, in effect, we have an equilibrium that is only slightly disturbed by C slowly reacting to form D.
In an equilibrium, the forward and reverse rates are equal:
k₁[A][B] = k₋₁[C]
[C] = (k₁/k₋₁)[A][B] = K[A][B] (K is the equilibrium constant)
rate = d[D]/dt = k₂[C] = k₂K[A][B] = k[A][B]
The rate law is
rate = k[A][B] where k = k₂K
Answer:
When the Zebra arrived they ate all the food so the Unionid mussels declined as they died from the lack of food. Causing the Zebra Zebra numbers to increase and Unionid numbers to decline.
Answer: Sodium bromide is an ionically bonded compound.
(NaBr: Sodium Bromide)
Physical properties are those which can be observed without any change in composition of the substance. Hence, a is the answer.