Answer:
0.15M
Explanation:
The equation for molarity is M= n/L. Where "M" is Molarity, "n" is the number of moles of solute, and "L" is the total liters in solution.
You need to calculate the number of moles from the given grams. The molar mass of KOH is (39.098+ 16 +1.008)= 56.106g. To calculate the mols of KOH,
×
= 0.44558... mol, you see that the grams unit cancel out leaving you with mol as the unit.
The volume is given in L already so no need to do any conversion. M=
= 0.1485M ≈ 0.15M
<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).
Answer:
0.967mole
Explanation:
Given parameters:
Volume of NH₄Cl = 21.67L
Unknown:
Number of moles = ?
Solution:
If we assume that the volume was taken at standard temperature and pressure,
Then;
Number of moles =
Number of moles =
= 0.967mole
Answer:
b) The molecule has a molecular weight under 200 g/mole
Explanation:
The molecule has a molecular weight under 200 g/mole is the primary requirement for a molecule to be analyzed by Gas Chromatography.