Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
The power of is series combination is Vn^2 times that of a parallel combination.
For series combination :
Req = R + R + R + ............... n times = nR
I = Δv/nr
Power = (Δv/nr)^2 × nr = Δv^2/nr
For parallel combination
1/req = 1/R + 1/R + 1/R +................(n times) = n/R
Req = R/n
Power = Δv/(R/n) = nΔv^2/R
Ratio = Δv^2/nr/n·Δv^2/R = 1/n^2
Hence, power of is series combination is Vn^2 times that of a parallel.
Learn more about parallel combination here:
brainly.com/question/12400458
#SPJ4
The long structure of small intestine is accommodated in small space within our body because of extensive coiling. the small intestine is highly coiled structure and thus can easily be fixed in a small space.
<span>The Sun and all the planets revolve around Earth.</span>