Answer:
Transition has to cross between solid and liquid in gray zone.No indoor organized public events and social gatherings are allowed, except with members of the same household.
The main (and only) purpose of the turbine in the turbo jet engine is to drive the air compressor. The turbojet engine works by compressing the air using an inlet and a compressor, then mixing the fuel with the compressed air, then passing the mixture to the combustor, then passing the high pressure air through a turbine and a nozzle.
Answer:
ω = 12.023 rad/s
α = 222.61 rad/s²
Explanation:
We are given;
ω0 = 2.37 rad/s, t = 0 sec
ω =?, t = 0.22 sec
α =?
θ = 57°
From formulas,
Tangential acceleration; a_t = rα
Normal acceleration; a_n = rω²
tan θ = a_t/a_n
Thus; tan θ = rα/rω² = α/ω²
tan θ = α/ω²
α = ω²tan θ
Now, α = dω/dt
So; dω/dt = ω²tan θ
Rearranging, we have;
dω/ω² = dt × tan θ
Integrating both sides, we have;
(ω, ω0)∫dω/ω² = (t, 0)∫dt × tan θ
This gives;
-1[(1/ω_o) - (1/ω)] = t(tan θ)
Thus;
ω = ω_o/(1 - (ω_o × t × tan θ))
While;
α = dω/dt = ((ω_o)²×tan θ)/(1 - (ω_o × t × tan θ))²
Thus, plugging in the relevant values;
ω = 2.37/(1 - (2.37 × 0.22 × tan 57))
ω = 12.023 rad/s
Also;
α = (2.37² × tan 57)/(1 - (2.37 × 0.22 × tan 57))²
α = 8.64926751525/0.03885408979 = 222.61 rad/s²
Answer:
(orbital speed of the satellite) V₀ = 3.818 km
Time (t) = 4.5 × 10⁴s
Explanation:
Given that:
The radius of the Earth is 6.37 × 10⁶ m; &
the acceleration of gravity at the satellite’s altitude is 0.532655 m/s
We can calculate the orbital speed of the satellite by using the formula:
Orbital Speed (V₀) = √(r × g)
radius of the orbit (r) = 21000 km + 6.37 × 10⁶ m
= (2.1 × 10⁷ + 6.37 × 10⁶) m
= 27370000
= 2.737 × 10⁷m
Orbital Speed (V₀) = √(r × g)
Orbital Speed (V₀) = √(2.737 × 10⁷ × 0.532655 )
= 3818.215
= 3.818 × 10³
= 3.818 Km
To find the time it takes to complete one orbit around the Earth; we use the formula:
Time (t) = 2 π × 
= 2 × 3.14 × 
= 45019.28
= 4.5 × 10 ⁴ s
Answer:
a) variation of the energy is equal to the work of the friction force
b) W = Em_{f} -Em₀
, c) he conservation of mechanical energy
Explanation:
a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.
Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.
b) the calluses that he would use are to hinder the worker's friction force and energy
W = Em_{f} -Em₀
N d = ½ m v² - m g (y₂-y₁)
y₂-y₁ = 35 -10 = 25m
c) if there is no friction, the physical principle is the conservation of mechanical energy
If there is friction, the principle is that the non-conservative work is equal to the variation of the energy