The number of particles in one mole is given be Avagadro's number <span>6.022×10^23
Multiply by number of moles.
3 ×10^-21 mol * 6.022 ×10^23 molecules/mol = </span><span>1,807 molecules
(rounded to nearest whole number)
</span>
We have the value of
Total energy produced in the chemical reaction=653 550 KJ
Time needed=142.3min
To calculate the rate of energy transfer, that is the amount of energy produced per minute.
Rate of energy transfer=
=
=4592.76 KJ min⁻¹
So, the rate of energy transfer is 4592.76 KJ min⁻¹.
a) NH₃ molecules have stronger intermolecular attractions than CH₄ molecules.
Explanation:
Ammonia molecules have stronger intermolecular attractions compared to methane.
Ammonia molecules have london dispersion forces and hydrogen bonds between their molecules.
Methane molecules have only london dispersion forces in their structure.
- hydrogen bonds are very strong attractive forces between molecules in which the hydrogen of a molecule is attracted by a more electronegative atom of another usually oxygen, nitrogen and fluorine.
- London dispersion forces are weak forces of attraction between heteronuclear atoms.
Learn more:
Hydrogen bonds brainly.com/question/10602513
#learnwithBrainly
Answer:
light is the result of electrons moving between defined energy levels in an atom called shells.
Explanation:
when something exited an atom like collision with another atom or a chemical reaction, an electron may absorb energy boosting it to a higher level shell.