Answer:
The answer is 4200 J.
Explanation:
The formula of work done is, W = F×D where F is the force of an object and D is the distance. Then you just substitute the values into the equation :
W = F×D
F = 42N
D = 100m
W = 42 × 100
= 4200 J
In a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
To find the answer, we have to know more about the transformer.
<h3>
How transformer works?</h3>
- An item utilized in the transfer of electric energy is a transformer.
- AC current is used for transmission.
- It is frequently used to modify the supply voltage between circuits without altering the AC frequency.
- The fundamentals of mutual and electromagnetic induction govern how the transformer operates.
- Magnetic field through the primary coil changes when primary coil current varies. the iron core of the secondary coil likewise has a magnetic field.
- EMF is therefore generated in the secondary coil.
Thus, we can conclude that, in a transformer, energy is carried from the primary coil to the secondary coil by magnetic field in the iron core.
Learn more about the transformer here:
brainly.com/question/26787198
#SPJ4
The words "... as shown ..." tell us that there's a picture that goes along
with this question, and you decided not to share it. That's sad and
disappointing, but I think the question can be answered without seeing
the picture.
The net force on the crate is zero. Evidence for this is that fact that
the crate is just sitting there. If the net force on an object is not zero,
then the object is accelerating ... it's either speeding up, slowing down,
or its the direction of its motion is changing. If none of these things is
happening, then the net force on the object must be zero.
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
Answer:
The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Explanation:
Given that,
Mass of aircraft = 10000 kg
Speed = 620 km/h = 172.22 m/s
Altitude = 10 km = 1000 m
We calculate the change in potential energy





For g = 10 m/s²,
The change in potential energy will be 1000 MJ.
We calculate the change in kinetic energy





For g = 10 m/s²,
The change in kinetic energy will be 150 MJ.
Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.