Answer:
c. 6,3x10⁻¹¹M
Explanation:
The solubility of a buffer is defined as the concentration of the dissolved solid in a saturated solution. For the Cd(OH)₂, solubility is:
[Cd²⁺] = S
The dissolution of Cd(OH)₂ is:
Cd(OH)₂ ⇄ Cd²⁺ + 2OH⁻
And the ksp is defined as:
ksp = [Cd²⁺][OH⁻]²
As ksp = 2,5x10⁻¹⁴ and [OH⁻] at pH=12,30 = 10^-(14-12,30) = 0,01995M
2,5x10⁻¹⁴ = [Cd²⁺]×(0,01995M)²
[Cd²⁺] = 6,3x10⁻¹¹M
That means solubility is <em>c. 6,3x10⁻¹¹M</em>
I hope it helps!
An alkyne will always have at least one triple bond. Hopefully this helps! :)
Answer:
A higher concentration of a catalyst will speed up the reaction rate.
A is Ea, which stands for activating energy. Energy is needed to get the reaction underway and Ea is the energy needed to “start” the reaction.
B is the temperature either released or absorbed.
The diagram shows that the reaction is exothermic based on the fact that the products energy is lower than the reactants. That is because energy (which is temperature in this case) is released during the process. If the reactants would have been lower than the products, the reaction would be endothermic.