Answer:
Scientist used models to explain and predict the behavior of real object or system
The reason that some of the elements of period three and beyond are steady in spite of not sticking to the octet rule is due to the fact of possessing the tendency of forming large size, and a tendency of making more than four bonds. For example, sulfur, it belongs to period 3 and is big enough to hold six fluorine atoms as can be seen in the molecule SF₆, while the second period of an element like nitrogen may not be big to comprise 6 fluorine atoms.
The existence of unoccupied d orbitals are accessible for bonding for period 3 elements and beyond, the size plays a prime function than the tendency to produce more bonds. Hence, the suggestion of the second friend is correct.
Hydrogen bonding and dipole-dipole forces.
There is 6 non - bonding pairs.
Let me show you one easy method to do this.
o22-, oxygen valence electron = 6 here we have two so total 12, and -2 that means we add electrons so it’s all equal to 14 right.
whenever need to find lone pair, subtract the number you get with the lowest multiple of 8.
here we total 14 valence electron right so lowest multiple of 8 would be 8.
so 14 - 8 = 6 and that is our answer.
Let me know if you have Problem with chemistry.
202827.0000 is the answer I think idrk