Weight of the carriage 
Normal force 
Frictional force 
Acceleration 
Explanation:
We have to look into the FBD of the carriage.
Horizontal forces and Vertical forces separately.
To calculate Weight we know that both the mass of the baby and the carriage will be added.
- So Weight(W)

To calculate normal force we have to look upon the vertical component of forces, as Normal force is acting vertically.We have weight which is a downward force along with
, force of
acting vertically downward.Both are downward and Normal is upward so Normal force 
- Normal force (N)

- Frictional force (f)

To calculate acceleration we will use Newtons second law.
That is Force is product of mass and acceleration.
We can see in the diagram that
and
component of forces.
So Fnet = Fy(Horizontal) - f(friction) 
- Acceleration (a) =

So we have the weight of the carriage, normal force,frictional force and acceleration.
Answer:
6s
Explanation:
Assume it is dropped from rest and the gravitational acceleration is 10
By the equation of motion under constant acceleration:

180 = (0)t+10(t^2)/2
t = 6 or -6 (rejected)
t = 6 s
A) 50 cm
B) 10000 cm/s
Explanation
Step 1
A)
If you know the distance between nodes and antinodes then use this equation:

then, let

now, replace to find the wavelength

so, the wavelength is
A) 50 cm
Step 2
The speed of a wave can be found using the equation

or velocity = wavelength x frequency,
then,let

replace and evaluate

so
B) 10000 cm/s
I hope this helps you
I don't no if this helps but the body heat from your hand causes the liquid to boil, which in turn makes the liquid evaporate, turning it to gas. The expanding gas pushes the liquid upwards and when you release your hand, equilibrium is re-established.
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>