1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
7

An imaginary dense star z has 1/5 the radius of earth, but 1000 times the earths. how much would a mass weighing 1.0n on earth w

eigh on star z
Physics
1 answer:
andrew11 [14]3 years ago
8 0
A 1-newton mass on earth would be 1000 newtons on star Z.

Funny enough, stars like this exist~! They're called "Neutron Stars."
You might be interested in
Fronts are termed by the temperature of the air mass that overtakes another air mass. A. True B. False
Vikki [24]
A. True
if cold air is replacing warm air it is a cold front and vice versa.
6 0
3 years ago
Read 2 more answers
Sort the forces as producing a torque of positive, negative, or zero magnitude about the rotational axis identified in part
Fantom [35]

a) Angular acceleration: 17.0 rad/s^2

b) Weight: conterclockwise torque, reaction force: zero torque

Explanation:

a)

In this problem, you are holding the pencil at its end: this means that the pencil will rotate about this point.

The only force producing a torque on the pencil is the weight of the pencil, of magnitude

W=mg

where m is the mass of the pencil and g the acceleration of gravity.

However, when the pencil is rotating around its end, only the component of the weight tangential to its circular trajectory will cause an angular acceleration. This component of the weight is:

W_p =mg sin \theta

where \theta is the angle of the rod with respect to the vertical.

The weight act at the center of mass of the pencil, which is located at the middle of the pencil. So the torque produced is

\tau = W_p \frac{L}{2}=mg\frac{L}{2} cos \theta

where L is the length of the pencil.

The relationship between torque and angular acceleration \alpha is

\tau = I \alpha (1)

where

I=\frac{1}{3}mL^2

is the moment of inertia of the pencil with respect to its end.

Substituting into (1) and solving for \alpha, we find:

\alpha = \frac{\tau}{I}=\frac{mg\frac{L}{2}sin \theta}{\frac{1}{3}mL^2}=\frac{3 g sin \theta}{2L}

And assuming that the length of the pencil is L = 15 cm = 0.15 m, the angular acceleration when \theta=10^{\circ} is

\alpha = \frac{3(9.8)(sin 10^{\circ})}{2(0.15)}=17.0 rad/s^2

b)

There are only two forces acting on the pencil here:

- The weight of the pencil, of magnitude mg

- The normal reaction of the hand on the pencil, R

The torque exerted by each force is given by

\tau = Fd

where F is the magnitude of the force and d the distance between the force and the pivot point.

For the weight, we saw in part a) that the torque is

\tau =mg\frac{L}{2} cos \theta

For the reaction force, the torque is zero: this is because the reaction force is applied exctly at the pivot point, so d = 0, and therefore the torque is zero.

Therefore:

- Weight: counterclockwise torque (I have assumed that the pencil is held at its right end)

- Reaction force: zero torque

8 0
3 years ago
Why does atmospheric pressure decrease with altitude.
ella [17]

Answer:

<em>Earth's gravity pulls air as close to the surface as possible. ... As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense than air nearer to sea level. This is what meteorologists and mountaineers mean by "thin air." Thin air exerts less pressure than air at a lower altitude.</em>

5 0
2 years ago
When you walk at an average speed (constant speed, no acceleration) of 20.7 m/s in 75.8 sec you will cover a distance of______?
nlexa [21]
1,569.06m
(20.7•75.8)
3 0
3 years ago
After being struck by a bowling ball, a 1.8 kg bowling pin sliding to the right at 5.0 m/s collides head-on with another 1.8 kg
kaheart [24]

Answer:

a) v₂ = 4.2 m/s

b) v₂ = 5 m/s

Explanation:

a)

We will use the law of conservation of momentum here:

m_1u_1+m_2u_2=m_1v_1+m_2v_2

where,

m₁ = m₂ = mass of bowling pin = 1.8 kg

u₁ = speed of first pin before collsion = 5 m/s

u₂ = speed of second pin before collsion = 0 m/s

v₁ = speed of first pin after collsion = 0.8 m/s

v₂ = speed of second after before collsion = ?

Therefore,

(1.8\ kg)(5\ m/s)+(1.8\ kg)(0\ m/s)=(1.8\ kg)(0.8\ m/s)+(1.8\ kg)(v_2)\\v_2 = 5\ m/s - 0.8\ m/s

<u>v₂ = 4.2 m/s</u>

<u></u>

b)

We will use the law of conservation of momentum here:

m_1u_1+m_2u_2=m_1v_1+m_2v_2

where,

m₁ = m₂ = mass of bowling pin = 1.8 kg

u₁ = speed of first pin before collsion = 5 m/s

u₂ = speed of second pin before collsion = 0 m/s

v₁ = speed of first pin after collsion = 0 m/s

v₂ = speed of second after before collsion = ?

Therefore,

(1.8\ kg)(5\ m/s)+(1.8\ kg)(0\ m/s)=(1.8\ kg)(0\ m/s)+(1.8\ kg)(v_2)

<u>v₂ = 5 m/s</u>

5 0
3 years ago
Other questions:
  • A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at In a few mi
    5·1 answer
  • A 2.50 gram rectangular object has measurements of 22.0 mm, 13.5 mm, and 12.5 mm. what is the object's density in units of g/ml?
    10·1 answer
  • A cannon is mounted on a truck that moves forward at a speed of 5 m/s. The operator wants to launch a ball from a cannon so the
    12·1 answer
  • Which change in an object would increase the force needed to move the object​
    8·1 answer
  • An object is 70 micrometer long and 47.66 micrometer wide. How long and wide is the object in km
    8·1 answer
  • Please give a explanation if possible Tysm!
    6·2 answers
  • PLEASE HELP ASAP BEST ANSWER WILL BE MARKED BRAINLIEST
    15·1 answer
  • The Sun's energy comes from which nuclear reaction?​
    11·2 answers
  • A battery causes a current of 2.0 A to flow through a lamp. The power used by the lamp is 12 watts. What is the voltage?
    7·1 answer
  • An object on the surface of the earth weighs 90 lb. At two earth radii above the surface, It will welgh:
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!