Answer:
See explanation
Explanation:
For a reaction that proceeds by E1 mechanism, the rate determining step involves the formation of the carbocation.
The rate of formation of this carbocation depends only on the concentration of the t-butyl bromide since it is the only specie that enters into the rate equation.
Hence, when the concentration of t-butyl bromide is tripled, the rate of reaction is tripled.
Methanol does not enter into the rate equation hence doubling its concentration does not affect the rate of reaction.
For a closed system, you need two things:
1) a conservation of mass within the boundaries of the system
2) the ability to freely exchange energy to & from the "closed" system with a surrounding external system
So, the answer is <u><em>never</em></u>, since your defining the "system" as the water within the bathtub, and an open bathtub is exposed to evaporation, which is not conserving mass within the defined "system".
Answer:
proportional. having a constant ratio. Second law: A body of mass m subject to a net force F undergoes an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force and inversely proportional to the mass, i.e., unbalanced.
Explanation:
hope it's help
Answer:
5.5 moles of given substance.
Explanation:
The given problem can be solved by using the Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
18 g of water = 1 mole = 6.022 × 10²³ molecules of water
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
Solution:
3.311 ×10²⁵ / 6.022 × 10²³ = moles
5.5 moles of given substance.