Answer:
7 for my answer
Step-by-step explanation:
hope that helps
I believe the fastest way to solve this problem is to take any two of the given points and to find the slope and y-intercept of the line connecting those two points.
Let's choose the 2 given points (-3,16) and (-1,12).
Going from the first point to the second, the increase in x is 2 and the increase in y is actually a decrease: -4. Thus, the slope of the line connecting these two points is m = -4/2, or m = -2.
Now use the slope-intercept formula to find the y-intercept, b.
One point on the line is (-3,16), and the slope is m = -2.
Thus, the slope-intercept formula y = mx + b becomes 16 = -2(-3) + b.
Here, b comes out to 10.
So now we have the slope and the y-intercept. Write the equation:
y = mx + b becomes y=-2x+10. Which of the four given answer choices is the correct one?
"y-axis, x-axis, y-axis, x-axis" is the set of reflections among the following choices given in the question that <span>would carry parallelogram ABCD onto itself. The correct option among all the options that are given in the question is the third option or the penultimate option. I hope that this is the answer that has helped you.</span>
The numbers that round up to 600 and have one decimal place are-
599.5
599.6
599.7
599.8
599.9
The numbers that round down to 600 and have one decimal place are-
600.1
600.2
600.3
<span>600.4
As far as numbers with more than one decimal place that round to 600, there is an infinite number. For example, 600.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000</span>0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000001 rounds down to 600.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.