The car will take 300 m before it stops due to applying break.
<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
- As per Newton's equation of motion, V² - U² = 2aS
- V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
- Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
- So, 0² - 60² = 2×6× S
=> -3600 = -12S
=> S = 3600/12 = 300 m
Thus, we can conclude that the distance covered by the car is 300 m before it stopped.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?
Learn more about the Newton's equation of motion here:
brainly.com/question/8898885
#SPJ1
The centripetal force, Fc, is calculated through the equation,
Fc = mv²/r
where m is the mass,v is the velocity, and r is the radius.
Substituting the known values,
Fc = (112 kg)(8.9 m/s)² / (15.5 m)
= 572.36 N
Therefore, the centripetal force of the bicyclist is approximately 572.36 N.
Answer:

Explanation:
The impulse or average force in classical mechanics is the variation in the linear momentum that a physical object experiences in a closed system. It is defined by the following equation:

Where:





Asumming v1=0 and t1=0:

<h2><em>C. translational motion</em></h2><h2><em>HOPE IT HELPS !!!!!</em></h2>
Answer:
Explanation:
Let
be the time required to make one revolution.
Let
be the radius of the circular path.
Let
be the distance travelled by ball in one revolution.
As we know,the distance travelled in one revolution is the circumference of the circle.
So,
Given,

Speed of an object moving is circular path is define as the ratio of distance travelled in one revolution to the time taken by the object to complete one revolution.
Let
be the speed of the ball.

So,the speed of the ball is 