Answer:
Zr (Zirconium)
Explanation:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d2
The specific heat capacity of the metal given the data from the question is 0.66 J/gºC
<h3>Data obtained from the question</h3>
- Mass of metal (M) = 76 g
- Temperature of metal (T) = 96 °C
- Mass of water (Mᵥᵥ) = 120 g
- Temperature of water (Tᵥᵥ) = 24.5 °C
- Equilibrium temperature (Tₑ) = 31 °C
- Specific heat capacity of the water (Cᵥᵥ) = 4.184 J/gºC
- Specific heat capacity of metal (C) =?
<h3>How to determine the specific heat capacity of the metal</h3>
The specific heat capacity of the sample of the metal can be obtained as follow:
Heat loss = Heat gain
MC(M –Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
76 × C × (96 – 31) = 120 × 4.184 × (31 – 24.5)
C × 4940 = 3263.52
Divide both side by 4940
C = 3263.52 / 4940
C = 0.66 J/gºC
Learn more about heat transfer:
brainly.com/question/6363778
#SPJ1
Protons and neutrons are in the center of the atom, making up the nucleus. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
<span>The
answer is compound. Elements are
composed of one kind of atoms bonded
together. There are different types of compounds: ionic, complexes, molecular,
and intermetallic compounds. The proportion of
elements in the compound is expressed
using a chemical formula. An example of
an element is Aluminium while an example of a compound is H2S (Hydrogen sulfide).</span>