1. The molar mass of Fe2(CO3)3 is 291.72 g/mol. This means that 45.6 g is equivalent to 0.156 mol. Dividing by the 0.167 L of water gives a solution of 0.936 M.
2. Multiplying (0.672 M)(0.025 L) = 0.0168 mol. The molar mass of Ni(OH)2 is 92.71 g/mol, so multiplying by 0.0168 mol = 1.56 grams. Therefore you would need to dissolved 1.56 g of Ni(OH)2 into 25 mL of water.
3. Fe2(CO3)3 + Ni(OH)2 --> Fe(OH)3 + NiCO3Balancing: Fe2(CO3)3 + 3Ni(OH)2 --> 2Fe(OH)3 + 3NiCO3The reaction quotient is:[Fe(OH)3]^2 * [NiCO3]^3 / [Fe2(CO3)3][Ni(OH)2]^3= (0.05)^2 * (1.45)^3 / (0.936)(0.672)^3= 0.0268Since this is < 1, it implies that the reactants are favored at equilibrium.
prince Henry is your answer (:
Answer:
3.01 × 10^24 particles
Explanation:
According to Avagadro, in one mole of a substance, there are 6.02 × 10^23 atoms or particles.
Using the formula: N = n × NA
Where;
N= number of particles or atoms
n = number of moles
NA = Avagadro's constant or number
This means that for 5 moles of a substance, there will be:
5 × 6.02 × 10^23
= 30.1 × 10^23
= 3.01 × 10^24 particles
The answer for the following question is option "C".
Option C is not included in the John Dalton's modern theory of an atom.
- "It states atoms of different elements combine to form new compound" but not new elements
Explanation:
According to John's Dalton's modern theory of an atom:
1. All matter is composed of atoms.
2. Atoms cannot be created,destroyed or subdivided in the ordinary chemical reactions.
3. Atoms of one element differ in the properties from atoms of an another element.
(i.e.)Each and every atom of the element has its own unique properties of their own.
4. Atoms of one element combine with the atoms of another element to <u>form new compound.</u>
5. Atoms that make up an element are identical to each other.