I'm not sure but I had this question on a benchmark I think its the density of the wire you need to find the density or the mass I'm not sure but i do remember this question
Answer:

Explanation:
First, let's find the voltage through the resistor using ohm's law:

AC power as function of time can be calculated as:
(1)
Where:

Because of the problem doesn't give us additional information, let's assume:

Evaluating the equation (1) in t=3600 (Because 1h equal to 3600s):

(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
Answer:

Explanation:
We will apply the equations of kinematics to both stones separately.
First stone:
Let us denote the time spent after the second stone is thrown as 'T'.

Second stone:

Answer:
#See solution for details.
Explanation:
-Chemical energy in the battery is converted into Electrical Energy which powers up the phone.
-The electrical energy is then converted to Light Energy when the phone is powered up, this is seen through the lightening up of the phone screen.
-During phone calls, the electrical energy is further converted to Sound Energy to allow for transmission of audio signals.
- As we continue to use the phone, the electrical energy is converted into heat energy which we feel due to an overheating battery.
-The cycle then repeats itself again whenever a phone is charged.