Answer:
The velocity of the frozen rock at
is -14.711 meters per second.
Explanation:
The frozen rock experiments a free fall, which is a type of uniform accelerated motion due to gravity and air viscosity and earth's rotation effect are neglected. In this case, we need to find the final velocity (
), measured in meters per second, of the frozen rock at given instant and whose kinematic formula is:
(Eq. 1)
Where:
- Initial velocity, measured in meters per second.
- Gravity acceleration, measured in meters per square second.
- Time, measured in seconds.
If we get that
,
and
, then final velocity is:


The velocity of the frozen rock at
is -14.711 meters per second.
Choice-'a' is a slippery, misleading, ambiguous statement,
but it's less wrong than any of the other choices on this list.
True since coulomb's law states that There is electric force between like charges or opposite charges. The negative sign only shows the nature of the force.
<h3>What is the coulombs law ?</h3>
coulombs formula is given by

Now it states that if two charged particles are separated by the distance r and having same or opposite charge will attract or repel each other.
The intensity of the force depend upon the distance and the nature of the charge.
Hence coulomb's law states that There is electric force between like charges or opposite charges. The negative sign only shows the nature of the force.
To know more about coulomb's law follow
https://brainly.in/question/332179
That's one of the three changes that are called "acceleration".
The other two are:
-- increase in the magnitude
-- change in direction.
Some might call a decrease in the magnitude "deceleration".