Answer:
a)V= 0.0827 m³
b)P=181.11 x 10² N/m²
Explanation:
Given that
m = 81.5 kg
Density ,ρ = 985 kg/m³
As we know that
Mass = Volume x Density
81.5 = V x 985
V= 0.0827 m³
The force exerted by weight = m g
F= m g= 81.5 x 10 = 815 N ( Take ,g= 10 m/s²)
Area ,A= 4.5 x 10⁻² m²
The Pressure P


P=181.11 x 10² N/m²
Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>
<span>adopt ecological conservation practices </span>
Mater doesn't just appear or disappeared. Chemical elements are still there just the connections and how it combines changes.
So what goes into your chemical eqation must still exist after the change.