It will get hotter, because the molecules create heat when they move around just like us when we run.
NH₃:
N = 8*10²²
NA = 6.02*10²³
n = N/NA = 8*10²²/6.02*10²³ ≈ 1.33*10⁻¹=0.133mol
O₂:
N=7*10²²
NA = 6.02*10²³
n = N/NA = 7*10²²/6.02*10²³ = 1.16*10⁻¹=0.116mol
4NH₃ <span>+ 3O</span>₂ ⇒<span> 2N</span>₂<span> + 6H</span>₂<span>O
</span>4mol : 3mol : 2mol
0.133mol : 0.116mol : 0,0665mol
limiting reactant
N₂:
n = 0.0665mol
M = 28g/mol
m = n*M = 0.0665mol*28g/mol = <u>1,862g</u>
Answer:
Yes
Explanation:
A supercritical fluid has good properties for both liquid and as for extraction properties, the advantages then include:
- The fact that it has a lower viscosity than liquid CO2 allowing it to move through and around coffee beans more thoroughly with creating back pressure
- Its density is comparable to that of liquid CO2 meaning there is much CO2 per litre as there is liquid form making it more efficient
- It has a higher diffusivity than liquid CO2 which aids with penetration of the coffee beans on a molecular level
This experiment would not work with tea leaves because they also contain caffeine
Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>
Chem bonds by exchanged charges create new characteristics as a result