<h3>
Answer:</h3>
1.93 g
<h3>
Explanation:</h3>
<u>We are given;</u>
The chemical equation;
2C₂H₆(g) + 7O₂(g) → 4CO₂(g) + 6H₂O(l) ΔH = -3120 kJ
We are required to calculate the mass of ethane that would produce 100 kJ of heat.
- 2 moles of ethane burns to produce 3120 Kilo joules of heat
Number of moles that will produce 100 kJ will be;
= (2 × 100 kJ) ÷ 3120 kJ)
= 0.0641 moles
- But, molar mass of ethane is 30.07 g/mol
Therefore;
Mass of ethane = 0.0641 moles × 30.07 g/mol
= 1.927 g
= 1.93 g
Thus, the mass of ethane that would produce 100 kJ of heat is 1.93 g
Answer:
just use the tongs and put it on a plate
Explanation:
From Earth's<span> density we can estimate what elements must compose the </span>Earth; an iron core<span> just happens to estimate </span>Earth's<span> mass the best. Now from energy waves, geologists use seismometers to measure movements in </span>Earth's<span> interior (e.g. Earthquakes), These energy-waves form compressional and shear waves</span>
Answer:
two negative charges is the answer of your question