<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>
M₁=6.584 g
m₂=4,194 g
m(H₂O)=m₁-m₂
w(H₂O)=m(H₂O)/m₁
w(H₂O)=(m₁-m₂)/m₁
w(H₂O)=(6.584-4.194)/6.584=0.3630 (36.30%)
the percentage by mass of water in the hydrate 36.30
<h2>Ultraviolet Light</h2>
Explanation:
- The energy of a photon that will be released if an electron falls from the n= 2 orbit (excited state) to the n0 = 1 orbit (ground state) is of ultraviolet light.
- In the ultraviolet part of the spectrum, a photon having an energy of 10.2 eV has a wavelength of 1.21 x 10-7 m.
- Hence, when an electron wants to jump or it gets excited from the first level to the second level that is from n = 1 orbit to n = 2 orbits, it must absorb a photon of ultraviolet light.
- But,When an electron falls from n = 2 orbit to n = 1 orbit or from n = 2 orbit(excited state) to n = 0 orbit(groubd state), it emits a photon of ultraviolet light.
¿es demasiado tarde para ayudarte?
Answer:
0.08911760029829444
Explanation:
hop that this what you wanted