Answer:
1.3223 acres
Explanation:
a football field's area is 360 feet (120 yards) x 160 feet (53.333 yards) = 57,600 sq. feet
if the area of an acre is 43,560 sq. feet, then a football field in acres = 57,600 sq. feet / 43,560 sq. feet = 1.3223 acres
we can verify our answer by doing the same calculation in sq. yards:
football field = 120 yards x 53.33 yards = 6,400 sq. yards
an acre is 4,840 sq. yards
football field in acres = 6,400 sq. yards / 4,840 sq. yards = 1.3223 acres
Answer:
The correct answers are: <u>Each oxygen of carbonate ion has -2/3 or -0.67 charge.</u>
<u>Bond order of each carbon‑oxygen bond in the carbonate ion</u> = <u>1.33</u>
Explanation:
The carbonate ion (CO₃²⁻) is an organic compound, in which a carbon atom is covalently bonded to three oxygen atoms. The net formal charge on a carbonate ion is −2.
The carbonate ion is <u>resonance stabilized</u> and has three equivalent resonating structures, which exhibits that all the three carbon-oxygen bonds in a carbonate ion are equivalent.
In the resonance hybrid of carbonate ion,<u> the negative charge is equally delocalized on all the three oxygen atoms. </u>
<u>Thus, each bonded oxygen has -2/3 or -0.67 charge.</u>
<u />
In a carbonate ion there is one double bond oxygen (C=O) and two single bonded oxygen (C-O). Bond order of 1 C=O is 2 and bond order of C-O is 1.
∴ <u>Bond order</u> = sum of all bond orders ÷ number of bonding groups = (2+1+1) ÷ 3 = <u>1.33</u>
Explanation:
According to Boyle's law, pressure of a gas is inversely proportional to its volume at constant temperature and moles.
Mathematically, P = 
where, k = proportionality constant
Also, formula for initial pressure and volume is as follows.

or, 
=
= 30 atm L
Now, we will calculate the value of
as follows.

= 
= 30 atm L
Hence, as
this means that it signifies that gas obeys boyle's law.
An example of an allotrope is carbon:
Carbon can exist in graphite, diamond and amorphous
Answer:
One of the bonds in nitrate is shorter than the other two.
Explanation:
We would firstly need to draw the Lewis structure for nitrate anion. To do this, let's follow the standard steps:
- calculate the total number of valence electrons: five from nitrogen, each oxygen contributes 6, so a total of 18 from oxygen atoms, as well as one from the negative charge, we have a total of 24 valence electrons;
- assign the central atom, usually this is the atom which is single; in this case, we have nitrogen as our central atom;
- assign single bonds to all the terminal atoms (oxygen atoms);
- assign octets to the terminal atoms and calculate the number of electrons assigned;
- the number of electrons assigned is 24, so no lone pairs are present on nitrogen;
- calculate the formal charges: each oxygen has a formal charge of -1 (formal charge is calculated subtracting the sum of lone pair electrons and bonds from the number of valence electrons of that atom); nitrogen has a formal charge of +2;
- nitrogen doesn't have an octet as well, so we'll both minimize its formal charge and make it obtain an octet if we make one double bond N=O.
Therefore, we may have 3 resonance structures, as this double bond might be formed with any of the 3 oxygen atoms.
By definition, double bonds are shorter than single ones, so one of the bonds is shorter than the other two.