Answer:
A velocity-time graph shows how velocity changes over time. The sprinter's velocity increases for the first 4 seconds of the race, it remains constant for the next 3 seconds, and it decreases during the last 3 seconds after she crosses the finish line.
calculate moles of both reagents given and the moles of FeS that each of them would form if they were in excess
moles = mass / molar mass
moles Fe = 7.62 g / 55.85 g/mol
= 0.1364 moles
1 mole Fe produces 1 mole FeS
Therefore 7.62 g Fe can form 0.1364 moles FeS
moles S = 8.67 g / 32.07 g/mol
= 0.2703 moles S
1 mole S can from 1 moles FeS
So 8.67 g S can produce 0.2703 moles FeS
The limiting reagent is the one that produces the least product. So Fe is limiting.
The maximum amount of FeS possible is from complete reaction of all the limiting reagent.
We have already determined that the Fe can form up to 0.1364 moles of FeS, so this is max amount of FeS you can get.
Convert to mass
hope this helps :)
Answer:
b. Magnetism (sorry im very late)
Explanation:
Intensive properties do not depend on size, no matter what it doesn't. For example, magnetism, density, melting and boiling points, and color. All of those support intensive property.
The oxidation-reduction reaction from the reactions above is
ZnS(s) + 2O2(g) ------ ZnSO4(s)
<h3>What is redox reactions?</h3>
Oxidation-reduction or redox reaction is the type of chemical reaction in which oxidation states of substrate changes
So therefore, the oxidation-reduction reaction from the reactions above is
ZnS(s) + 2O2(g) ------ ZnSO4(s)
Learn more about oxidation-reduction reactions:
brainly.com/question/10668495
#SPJ1