Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
Answer:
1 greater distances fallen in successive seconds
Explanation:
When a body falls freely it is subjected to the action of the force of gravity, which gives an acceleration of 9.8 m / s2, consequently, we are in an accelerated movement
If we use the kinematic formula we can find the position of the body
Y = Vo t + ½ to t2
Where the initial velocity is zero or constant and the acceleration is the acceleration of gravity
Y = - ½ g t2 = - ½ 9.8 t2 = -4.9 t2
Let's look for the position for successive times
t (s) Y (m)
1 -4.9
2 -19.6
3 -43.2
The sign indicates that the positive sense is up
It can be clearly seen that the distance is greatly increased every second that passes
Answer:
a
The number of fringe is z = 3 fringes
b
The ratio is 
Explanation:
a
From the question we are told that
The wavelength is 
The distance between the slit is 
The width of the slit is 
let z be the number of fringes that appear between the first diffraction-envelope minima to either side of the central maximum in a double-slit pattern is and this mathematically represented as

Substituting values
z = 3 fringes
b
From the question we are told that the order of the bright fringe is n = 3
Generally the intensity of a pattern is mathematically represented as
![I = I_o cos^2 [\frac{\pi d sin \theta}{\lambda} ][\frac{sin (\pi a sin \frac{\theta}{\lambda } )}{\pi a sin \frac{\theta}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%5B%5Cfrac%7B%5Cpi%20d%20sin%20%5Ctheta%7D%7B%5Clambda%7D%20%5D%5B%5Cfrac%7Bsin%20%28%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%20%7D%20%29%7D%7B%5Cpi%20a%20sin%20%5Cfrac%7B%5Ctheta%7D%7B%5Clambda%7D%20%7D%20%5D)
Where
is the intensity of the central fringe
And Generally 
![I = I_o co^2 [ \frac{\pi (\frac{n \lambda}{d} )}{\lambda} ] [\frac{\frac{sin (\pi a (\frac{n \lambda}{d} ))}{\lambda} }{\frac{\pi a (\frac{n \lambda}{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20co%5E2%20%5B%20%5Cfrac%7B%5Cpi%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%5D%20%5B%5Cfrac%7B%5Cfrac%7Bsin%20%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%7D%7B%5Cfrac%7B%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (n \pi)[\frac{\frac{sin(\pi a (\frac{n \lambda}{d} ))}{\lambda} )}{ \frac{ \pi a (\frac{n \lambda }{d} )}{\lambda} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%28n%20%5Cpi%29%5B%5Cfrac%7B%5Cfrac%7Bsin%28%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%7D%7Bd%7D%20%29%29%7D%7B%5Clambda%7D%20%29%7D%7B%20%5Cfrac%7B%20%5Cpi%20a%20%28%5Cfrac%7Bn%20%5Clambda%20%7D%7Bd%7D%20%29%7D%7B%5Clambda%7D%20%7D%20%5D)
![I = I_o cos^2 (3 \pi) [\frac{sin (\frac{3 \pi }{6} )}{\frac{3 \pi}{6} } ]](https://tex.z-dn.net/?f=I%20%3D%20I_o%20cos%5E2%20%283%20%5Cpi%29%20%5B%5Cfrac%7Bsin%20%28%5Cfrac%7B3%20%5Cpi%20%7D%7B6%7D%20%29%7D%7B%5Cfrac%7B3%20%5Cpi%7D%7B6%7D%20%7D%20%5D)


True because my mom said to me this morning that i have to take my breakfast