Explanation:
First, we will calculate the electric potential energy of two charges at a distance R as follows.
R = 2r
= 
= 0.2 m
where, R = separation between center's of both Q's. Hence, the potential energy will be calculated as follows.
U = 
= 
= 0.081 J
As, both the charges are coming towards each other with the same energy so there will occur equal sharing of electric potential energy between these two charges.
Therefore, when these charges touch each other then they used to posses maximum kinetic energy, that is,
.
Hence, K.E = 
= 
= 0.0405 J
Now, we will calculate the speed of balls as follows.
V = 
= 
= 0.142 m/s
Therefore, we can conclude that final speed of one of the balls is 0.142 m/s.
The frequency of the wave is 
Explanation:
The frequency, the wavelength and the speed of a wave are related by the following equation:

where
c is the speed of the wave
f is the frequency
is the wavelength
For the radio wave in this problem,


Therefore, the frequency is:

Learn more about waves here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Answer:
not work.
Explanation:
if u are saying in a series circuit...
if 1 build burns out and theres other bulbs the circuit wont work anymore.
Answer:
car B will be 30 Km ahead of car A.
Explanation:
We'll begin by calculating the distance travelled by each car. This is illustrated below:
For car A:
Speed = 40 km/h
Time = 3 hours
Distance =?
Speed = distance / time
40 = distance / 3
Cross multiply
Distance = 40 × 3
Distance = 120 Km
For car B:
Speed = 50 km/h
Time = 3 hours
Distance =?
Speed = distance / time
50 = distance / 3
Cross multiply
Distance = 50 × 3
Distance = 150 Km
Finally, we shall determine the distance between car B an car A. This can be obtained as follow:
Distance travelled by car B (D₆) = 150 Km
Distance travelled by car A (Dₐ) = 120 Km
Distance apart =?
Distance apart = D₆ – Dₐ
Distance apart = 150 – 120
Distance apart = 30 Km
Therefore, car B will be 30 Km ahead of car A.