Answer:
Explanation:
Let the volume of the unknown bulb = X L
The volume of the system , after opening valve = (X + 0.72 L )
Use Boyles law gas equation,
P1V1 = P2V2 ( at temperature is constant )
Given:
P1 = 1.2 atm
P2 = 683 torr
Converting mmHg to atm,
1 atm = 760 mmHg(torr)
683 mmHg = 683/760
= 0.8987 atm
1.2X = 0.8987*(X + 0.720)
1.2X = 0.8987X + 0.6471
0.3013X = 0.6471
X = 2.15 L
Answer
given,
mass of glider = 0.23 Kg
spring constant = k = 4.50 N/m
spring stretched to 0.130 m
The springs potential energy =


U = 0.038 J
at x = 0,the only energy will be kinetic .


v² = 0.3304
v = 0.575 m/s
displacement of the glider
using conservation of energy



x = 0.678 m
The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

This is equal to the change in the bullet's kinetic energy.

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

Thus the speed of the bullet is 71 m/s
Answer:
The direction of defliection of the site to the left I think ..