Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is

Explanation:
From the question we are told that
The time constant 
The potential across the capacitor can be mathematically represented as

Where
is the voltage of the capacitor when it is fully charged
So at


Generally energy stored in a capacitor is mathematically represented as

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as


Hence the fraction of the energy stored in an initially uncharged capacitor is

Considering the unknown resistence as R and using the Ohm's First Law, we have:
The equivalent resistence is given by the resistor series with the lamp resistence.

If you notice any mistake in my english, please let me know, because i am not native.
Answer:
70.5 mph
Explanation:
A passenger jet travels from Los Angeles to Bombay, India, in 22h.
The return flight takes 17 h.
The difference in flight times is caused by winds over the Pacific Ocean that
blow primarily from west to east.
If the jet's average speed in still air is 550 mi/h what is the average speed
of the wind during the round trip flight? Round to the nearest mile per hour.
Is your answer reasonable?
:
Let w = speed of the wind
:
Write a distance equation (dist is the same both ways
17(550+w) = 22(550-w)
9350 + 17w = 12100 - 22w
17w + 22w = 12100 - 9350
39w = 2750
W = 2750/39
w = 70.5 mph seems very reasonable
:
Confirming if the solution by finding the distances using these value
17(550+70.5) = 10549 mi
22(550-70.5) = 10549 mi; confirms our solution of w = 70.5 mph
Nitrogen and phosphorus !
Answer:
law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time.