Answer:
C. element. oxygen is an element
Explanation:
oxygen is element #8
Answer: The entropy change of the surroundings will be -17.7 J/K mol.
Explanation: The enthalpy of vapourization for 1 mole of acetone is 31.3 kJ/mol
Amount of Acetone given = 10.8 g
Number of moles is calculated by using the formula:

Molar mass of acetone = 58 g/mol
Number of moles = 
If 1 mole of acetone has 32.3 kJ/mol of enthalpy, then
0.1862 moles will have = 
To calculate the entropy change for the system, we use the formula:

Temperature = 56.2°C = (273 + 56.2)K = 329.2K
Putting values in above equation, we get
(Conversion Factor: 1 kJ = 1000J)
At Boiling point, the liquid phase and gaseous phase of acetone are in equilibrium. Hence,


Answer is: at higher temperatures reaction will go to the right (forward), more products (C₂H₄ and H₂) will be produce, because this is endothermic reaction (ΔH<span> is positive, </span>energy is consumed) and according Le Chatelier's principle <span>heat is included as a reactant. </span> .
74.62 g of magnesium oxide is formed from 45.00 g magnesium so 74.62-45.00= 29.62 g of oxygen is consumed or in other words a new compound is formed in the burning of magnesium in oxygen with a heavier mass than the pure magnesium.
The molarity of the resulting solution obtained by diluting the stock solution is 3 M
<h3>Data obtained from the question </h3>
- Molarity of stock solution (M₁) = 15 M
- Volume of stock solution (V₁) = 500 mL
- Volume of diluted solution (V₂) = 2.5 L = 2.5 × 1000 = 2500 mL
- Molarity of diluted solution (M₂) =?
<h3>How to determine the molarity of diluted solution </h3>
M₁V₁ = M₂V₂
15 × 500 = M₂ × 2500
7500 = M₂ × 2500
Divide both side by 2500
M₂ = 7500 / 2500
M₂ = 3 M
Thus, the volume of the resulting solution is 3 M
Learn more about dilution:
brainly.com/question/15022582
#SPJ1