Bases
A base is a substance that dissociates into more hydroxide ions (-OH-) when dissolved in water. Bases are also good proton acceptors. Bases, therefore, reduce the number of H+ and increase OH- hence raising the pH of the solution.
B(aq) + H₂O(l) ⇌ BH⁺(aq) + OH⁻(aq)
Explanation:
Other properties of bases is that they are bitter to the taste and they feel slippery when touched. Strong bases are nonthlese very corrosive like acids. Bases turn red litmus paper blue. Most alkali hydroxides such as NaOH are bases.
Learn More:
For more on bases check out;
brainly.com/question/12574229
brainly.com/question/2015251
#LearnWithBrainly
(B. 3) 172 All nonzero digits are significant.
(A. 4) 450.0 x 10^3 Trailing zeroes after the decimal point are significant.
(A. 4) 3427 All nonzero digits are significant.
(B. 3) 0.0000455 Leading zeroes are not significant.
(B. 3) 0.00456 Leading zeroes are not significant.
(C. 5) 2205.2 Zeroes between nonzero digits are significant.
(C. 5) 107.20 Trailing zeroes after the decimal point are significant.
(B. 3) 0.0473 Leading zeroes are not significant.
F. because electronegativity generally increases as you move from left to right across a periodic table, and F is farther right than O
Correct question
The density of liquid mercury is 13.6 g/mL. What is its density in units of lb/in3? (2.5 cm = 1 in., 2.205 lbs= 1 kg., 1000 g =1 kg, 1 mL = 1 cm³)
Answer:

Explanation:
Given that;-
The density = 13.6 g/mL
Also, 1 kg = 2.205 lb
1 kg = 1000 g
So, 1000 g = 2.205 lb
1 g = 0.002205 lb
Also,
1 in = 2.54 cm
1 in³ = 16.39 cm³
1 cm³ = 1 mL
So, 1 in³ = 16.39 mL
1 mL = 0.061 in³
The expression for the calculation of density is shown below as:-

Thus,

Answer:
1) The overlap of the p orbitals of the carbon-carbon π bond would be lost
Explanation:
Unlike simple bonds, a double bond can not rotate, since it is not possible to twist the ends of the molecule without breaking the π bond.
In the structure of but-2-ene present in the attachment, we can see the two isomers, <em>cis</em> and<em> trans</em>. These isomers cannot be interconverted by rotation around the carbon-carbon double bond without breaking the π bond.