Explanation:
Given:
Final speed of mass A = Va
Final speed of mass B = Vb
Mass of A = Ma
Mass of B = Mb
Ma = 2 × Mb
By conservation of linear momentum,
0 = Ma × Va + Mb × Vb
0 = 2 × Mb × Va + Mb × Vb
Vb = - 2 × Va
Energy of the spring, U = 1/2 × k × x^2
1/2 k x² = 1/2 × Ma × Va² + 1/2 × Mb × Vb²
35 = 1/2 × Ma × Va² + 1/2 × Mb × Vb²
Ma × Va² + Mb × Vb² = 70
2 × Mb (-Vb/2)² + Mb × Vb² = 70
1/2 × Mb × Vb² + Mb × Vb² = 70
3/2 × Mb × Vb² = 70
Mb × Vb² = 140/3
= 46.7 J
Ma = 2 × Mb and Vb = - 2 × Va
Ma/2 × (4 × Va²) = 140/3
Ma × Va² = 70/3
Kinetic energy of mass A, KEa = 1/2 × Ma × Va² = 23.3 J
Kinetic energy of mass B = 1/2 × Mb × Vb² = 46.7 J
I think your best bet would be.
It acts in the direction opposite of the motion
Answer:
(a) the tangential speed of a point at the edge is 3.14 m/s
(b) At a point halfway to the center of the disc, tangential speed is 1.571 m/s
Explanation:
Given;
angular speed of the disc, ω = 500 rev/min
diameter of the disc, 120 mm
radius of the disc, r = 60 mm = 0.06 m
(a) the tangential speed of a point at the edge is calculated as follows;

Tangential speed, v = ωr
v = 52.37 rad/s x 0.06 m
v = 3.14 m/s
(b) at the edge of the disc, the distance of the point = radius of the disc
at half-way to the center, the distance of the point = half the radius.
r₁ = ¹/₂r = 0.5 x 0.06 m = 0.03 m
The tangential velocity, v = ωr₁
v = 52.37 rad/s x 0.03 m
v = 1.571 m/s
the force acting on that object
Answer:
P= 168258.30696 Pa
Explanation:
Given that
Mass of water vapor m = 19.00 g
Volume of water vapor V = 2.00 L
Temperature of water vapor is T = 111°C
= 384K
Molar mass of water is M = 18.0148 g/mol
Number of moles are
n = m/M
= (1.90 g)/(18.0148 g/mol)
= 0.1054 mol
Pressure inside the container is
P= nRT/V

P= 168258.30696 Pa