1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
9

A girl running around a circular track of radius 200 m completes one

Physics
1 answer:
kondor19780726 [428]3 years ago
4 0

Answer:

v = 2 m/s

Explanation:

First, we find the angular velocity of the girl by using the following formula:

Angular\ Velocity =\omega= \frac{Angular\ Distance\ Covered}{Time\ Taken}\\\\\omega = \frac{1\ revolution}{10\ min}\frac{1\ min}{60\ s}\frac{2\pi\ rad}{1\ revolution}\\\\\omega = 0.01\ rad/s

Now, for the average velocity of the girl we can use the following formula:

Average\ Velocity = V = r\omega\\V = (200\ m)(0.01\ rad/s)\\

where,

r = radius = 200 m

therefore,

<u>v = 2 m/s</u>

You might be interested in
An airplane is moving at 350 km/hr. If a bomb is
Molodets [167]

Answers:

a) -171.402 m/s

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final jeight

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb'e initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's fina velocity

Knowing this, let's begin with the answers:

<h3>b) Time</h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity</h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign ony indicates the direction is downwards

<h3>c) Range</h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
3 years ago
A light spring obeys Hooke's law. The spring's unstretched length is 34.0 cm. One end of the spring is attached to the top of a
sleet_krkn [62]

When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is

∑ F = R - mg = 0

where mg = weight of the mass = (7.00 kg) g = 68.6 N.

It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that

k (0.105 m) = 68.6 N   ⇒   k = (68.6 N) / (0.105 m) ≈ 653 N/m

5 0
2 years ago
Stars combine Hydrogen to make Helium during nuclear fusion. Living things are made of heavier elements like Carbon, Oxygen, Iro
alex41 [277]
They were formed in the nuclear<span> fusion reaction inside older </span><span>stars.
 
As a star burns, fusion reactions inside its core create heavier elements. Those materials are released when the star dies of old age in an explosion.</span>
8 0
3 years ago
Image caught<br>on Screen is called​
bixtya [17]

Answer:

<h2>Virtual image</h2>

Explanation:

<h3><em>Virtual</em><em> </em><em>image</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>caught</em><em> </em><em>on</em><em> </em><em>a</em><em> </em><em>screen</em></h3>

<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>

<em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>brainliest</em><em>!</em>

<em>follow</em><em> </em><em>~</em><em>H</em><em>i</em><em>1</em><em>3</em><em>1</em><em>5</em><em>~</em>

4 0
3 years ago
Read 2 more answers
Light bulb 1 operates with a filament temperature of 2700 K whereas light bulb 2 has a filament temperature of 2100 K. Both fila
Lemur [1.5K]

Answer:

0.3659

Explanation:

The power (p) is given as:

P = AeσT⁴

where,

A =Area

e = transmittivity

σ = Stefan-boltzmann constant

T = Temperature

since both the bulbs radiate same power

P₁ = P₂

Where, 1 denotes the bulb 1

2 denotes the bulb 2

thus,

A₁e₁σT₁⁴ = A₂e₂σT₂⁴

Now e₁=e₂

⇒A₁T₁⁴ = A₂T₂⁴

or

\frac{A_1}{A_2} =\frac{T_{2}^{4}}{T_{1}^{4}}

substituting the values in the above question we get

\frac{A_1}{A_2} =\frac{2100_{2}^{4}}{2700_{1}^{4}}

or

\frac{A_1}{A_2} }=0.3659

6 0
3 years ago
Other questions:
  • The metric unit for temperature is _______________.<br> a. fahrenheitb. celsiusc. secondd. liter
    8·1 answer
  • The speedometer of a car moving east reads 60 mph. It passes another car that travels west at 60 mph do the cars have the same v
    9·1 answer
  • Two point charges of +2.50 x 10^-5 C and -2.50 x 10^-5 C are separated by 0.50m. Which of the following describes the force betw
    9·1 answer
  • Match the particles with their characteristics,
    9·2 answers
  • What scenario shows responsible behavior with regard to lab safety
    15·1 answer
  • If speed quadruples from 11 m/s to 44 m/s, what happens to the kinetic energy?
    14·1 answer
  • Has anyone ever done the model of an atom lab?
    8·2 answers
  • At what type of plate boundary is lithosphere created?
    14·1 answer
  • Sam moves an 800 N wheelbarrow 5 meters in 15 seconds. How much work did he do?
    5·1 answer
  • What is the wavelength associated with an electron with a velocity of 4.8x10*5 m/s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!