Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
When the spring is extended by 44.5 cm - 34.0 cm = 10.5 cm = 0.105 m, it exerts a restoring force with magnitude R such that the net force on the mass is
∑ F = R - mg = 0
where mg = weight of the mass = (7.00 kg) g = 68.6 N.
It follows that R = 68.6 N, and by Hooke's law, the spring constant is k such that
k (0.105 m) = 68.6 N ⇒ k = (68.6 N) / (0.105 m) ≈ 653 N/m
They were formed in the nuclear<span> fusion reaction inside older </span><span>stars.
As a star burns, fusion reactions inside its core create heavier elements. Those materials are released when the star dies of old age in an explosion.</span>
Answer:
<h2>Virtual image</h2>
Explanation:
<h3>
<em>Virtual</em><em> </em><em>image</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>caught</em><em> </em><em>on</em><em> </em><em>a</em><em> </em><em>screen</em></h3>
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
<em>will</em><em> </em><em>give</em><em> </em><em>the</em><em> </em><em>brainliest</em><em>!</em>
<em>follow</em><em> </em><em>~</em><em>H</em><em>i</em><em>1</em><em>3</em><em>1</em><em>5</em><em>~</em>
Answer:
0.3659
Explanation:
The power (p) is given as:
P = AeσT⁴
where,
A =Area
e = transmittivity
σ = Stefan-boltzmann constant
T = Temperature
since both the bulbs radiate same power
P₁ = P₂
Where, 1 denotes the bulb 1
2 denotes the bulb 2
thus,
A₁e₁σT₁⁴ = A₂e₂σT₂⁴
Now e₁=e₂
⇒A₁T₁⁴ = A₂T₂⁴
or

substituting the values in the above question we get

or
=0.3659