Answer:
0.737 L
Explanation:
Charles law states for a fixed amount of gas, volume of the gas is directly proportional to the absolute temperature of the gas at constant pressure
we can use the following equation
V1/T1 = V2/T2
where V1 is volume and T1 is temperature at first instance
V2 is volume and T2 is temperature at the second instance
substituting the values
3.50 L / 727.0 K = V2 / 153.0 K
V2 = 0.737 L
new volume at 153.0 K is 0.737 L
Answer:
(E) changing temperature
Explanation:
Consider the following reversible balanced reaction:
aA+bB⇋cC+dD
If we know the molar concentrations of each of the reaction species, we can find the value of Kc using the relationship:
Kc = ([C]^c * [D]^d) / ([A]^a * [B]^b)
where:
[C] and [D] are the concentrations of the products in the equilibrium; [A] and [B] reagent concentrations in equilibrium; already; b; c and d are the stoichiometric coefficients of the balanced equation. Concentrations are commonly expressed in molarity, which has units of moles / 1
There are some important things to remember when calculating Kc:
- <em>Kc is a constant for a specific reaction at a specific temperature</em>. If you change the reaction temperature, then Kc also changes
- Pure solids and liquids, including solvents, are not considered for equilibrium expression.
- The reaction must be balanced with the written coefficients as the minimum possible integer value in order to obtain the correct value of Kc
Answer:
40.32L
Explanation:
So we know that 22.4 Liters is one mole of a gass so we can set up an equation to test that
1mole 1.8mole
_____ = _____
22.4L x
and then cross multiply so you get 40.32L
Answer:
32.23 to 4 significant figures.
Explanation:
The molar mass of the element is the mass of 6.022 * 10^23 atoms (Avogadro's number).
So by proportion it is 6.022 * 10^23 * 3.88 / 7.25 * 10^22
= 32.23 to 4 significant figures.
Answer:
This apparently cant be balanced. i checked online
but im not 100%
Explanation: