1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klasskru [66]
3 years ago
8

Help!! Help!! Help!! Help!!

Physics
1 answer:
Mice21 [21]3 years ago
3 0

I think it's Quadratic. With all the rapid increase of the values of y.

You might be interested in
A cross-country skier slides horizontally along the snow and comes to rest after sliding a distance of 11 m. If the coefficient
Basile [38]

Answer:

v_o = 4.54 m/s  

Explanation:

<u>Knowns  </u>

From equation, the work done on an object by a constant force F is given by:  

W = (F cos Ф)S                                   (1)  

Where S is the displacement and Ф is the angle between the force and the displacement.  

From equation, the kinetic energy of an object of mass m moving with velocity v is given by:  

K.E=1/2m*v^2                                       (2)

From The work- energy theorem , the net work done W on an object equals the difference between the initial and the find kinetic energy of that object:  

W = K.E_f-K.E_o                                 (3)

<u>Given </u>

The displacement that the sled undergoes before coming to rest is s = 11.0 m and the coefficient of the kinetic friction between the sled and the snow is μ_k = 0.020  

<u>Calculations</u>

We know that the kinetic friction force is given by:

f_k=μ_k*N

And we can get the normal force N by applying Newton's second law to the sled along the vertical direction, where there is no acceleration along this direction, so we get:  

∑F_y=N-mg

     N=mg

Thus, the kinetic friction force is:  

f_k = μ_k*N  

Since the friction force is always acting in the opposite direction to the motion, the angle between the force and the displacement is Ф = 180°.  

Now, we substitute f_k and Ф into equation (1), so we get the work done by the friction force:  

W_f=(f_k*cos(180) s

      =-μ_k*mg*s

Since the sled eventually comes to rest, K.E_f= 0 So, from equation (3), the net work done on the sled is:  

W= -K.E_o    

Since the kinetic friction force is the only force acting on the sled, so the net work on the sled is that of the kinetic friction force  

W_f= -K.E_o  

From equation (2), the work done by the friction force in terms of the initial speed is:  

W_f=-1/2m*v^2  

Now, we substitute for W_f= -μ_k*mg*s, and solving for v_o so we get:  

-μ_k*mg*s = -1/2m*v^2  

v_o = √ 2μ_kg*s

Finally, we plug our values for s and μ_k, so we get:  

v_o = √2 x (0.020) x (9.8 m/s^2) x (11.0 m) = 4.54 m/s  

v_o = 4.54 m/s  

6 0
3 years ago
Read 2 more answers
In a game of pool, the cue ball strikes another ball of the same mass and initially at rest. After the collision, the cue ball m
ikadub [295]

(a) -39.4^{\circ}

Let's take the initial direction (before the collision) of the cue ball has positive x-direction.

Along the y-direction, the total initial momentum is zero:

p_y =0

Therefore, since the total momentum must be conserved, it must be zero also after the collision. So we write:

0 = m v_1 sin \phi_1 + m v_2 sin \phi_2 \\0 = m(4.60) sin (28^{\circ}) + m(3.40) sin \phi_2

where

m is the mass of each ball

v_1= 4.60 m/s is the velocity of the cue ball after the collision

v_2 = 3.40 m/s is the velocity of the second ball after the collision

\phi_1=28.0^{\circ} is the angle of the cue ball with the x-axis

\phi_2 is the angle of the second ball

Solving for \phi_2, we find the angle between the direction of motion of the second ball and the original direction of motion:

sin \phi_2 = -\frac{4.60 sin 28}{3.40}=-0.635\\\phi_2 = -39.4^{\circ}

(b) 6.69 m/s

To find the original speed of the cue ball, we analyze the situation along the horizontal direction.

First, we calculate the total momentum along the x-direction after the collision, which is:

p_x = m v_1 cos \phi_1 + m v_2 cos \phi_2 \\0 = m(4.60) cos (28^{\circ}) + m(3.40) cos (-39.4^{\circ})=6.69 m

The initial total momentum along the x-direction as

p_x = m u

where

m is the mass of the cue ball

u is the initial velocity of the cue ball

The momentum along this direction must be conserved, so we can equate the two expressions and find the value of u:

mu = 6.69 m\\u = 6.69 m/s

7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cbold%7B%20Choose%20%5C%3A%20the%20%5C%3A%20correct%20%5C%3A%20Answer%20%5C%3A%20%3A%29%20%5
Ulleksa [173]

Answer:

B and B

Explanation:

Question 1:

The distance is a unit of length, such as miles, meters, kilometers

The correct answer for this question would be 8m

Question 2:

Speed has a unit of length per unit of time.

The correct answer for this would be meters per second

-Chetan K

3 0
2 years ago
The square loop shown in the figure moves into a 0.80T magnetic field at a constant speed of 10m/s. The loop has a resistance of
PolarNik [594]
The question ask to find and calculate the induced current in the loop as a function time and the best answer would be that the induced current in the loop is 0.08 amperes. I hope you are satisfied with my answer and feel free to ask for more if you have clarifications and further questions
7 0
3 years ago
Read 2 more answers
If a truck has the mass of 2,000 kilometres and a velocity of 35 m/s, what is the momentum
alexira [117]

Answer:

<h2>70,000 kg.m/s</h2>

Explanation:

The momentum of an object can be found by using the formula

momentum = mass × velocity

From the question we have

momentum = 2000 × 35

We have the final answer as

<h3>70,000 kg.m/s</h3>

Hope this helps you

5 0
2 years ago
Other questions:
  • In which situation is no work being done?
    8·1 answer
  • A child jumps on a trampoline. What causes the child to rise in the air?
    5·2 answers
  • How do you calculate the work done when lifting an object?
    7·1 answer
  • Give a specific example of a machine,and describe how its mechanical efficiency might be calculated
    13·1 answer
  • Circle the letter of the sentence that tells how Bohr' model of the atom differed from Rutherford's model A. Bohr's model focuse
    6·1 answer
  • According to the theory of plate tectonics
    8·1 answer
  • 3. A rock has a volume of 6 cm3 and a mass of 24g. What is the density of the rock?
    7·2 answers
  • A race starts and finishes a race that is 50,000m. (30miles). The time is 23 minutes. The final velocity is 67m/s. What is the a
    13·1 answer
  • Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from the roof of a single sto
    9·1 answer
  • Scientists who possess this attitude question the results of experiments.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!