Answer:

Explanation:
Use Doppler effect equation:
The Doppler effect is a physical phenomenon where an apparent change in wave frequency is presented by a sound source with respect to its observer when that same source is in motion. The general equation is given by:

- When the observer moves towards the source
is positive.
- When the observer moves away from the source
is negative.
- When the source moves towards the observer
is negative.
- When the source moves away from the observer
is positive.
Since the problem don't give us aditional information let's assume:

Which is the speed of sound in air.
And using the information provided by the problem:


The frequency perceived by the person is 331.046Hz
<em><u>Translation:</u></em>
<em><u></u></em>
Usa la ecuación del Efecto Doppler:
El efecto Doppler es un fenómeno físico en el que una fuente de sonido presenta un cambio aparente en la frecuencia de onda con respecto a su observador cuando esa misma fuente está en movimiento. La ecuación general viene dada por:

- Cuando el observador se mueve hacia la fuente
es positivo.
- Cuando el observador se aleja de la fuente es
negativo.
- Cuando la fuente se mueve hacia el observador
es negativa.
- Cuando la fuente se aleja del observador
es positiva.
Como el problema no nos da información adicional, supongamos que:

La cuál es la velocidad del sonido en el aire.
Y utilizando la información proporcionada por el problema:

La frecuencia percibida por la persona es 331.046Hz
I think you need more information like the force of gravity and the force of the three people. Once you combine the two, however, you should get the net force.
Answer:
20 m/s
Explanation:
If the mass of fragment A is m, then the mass of fragment B is 2m, and the mass of fragment C is 3m.
The velocity of A is 60 m/s at angle 0°.
The velocity of B is 30 m/s at angle 120°.
The velocity of C is v at angle θ.
In the x direction:
Momentum before = momentum after
(m + 2m + 3m) (0) = m (60 cos 0°) + 2m (30 cos 120°) + 3m (v cos θ)
0 = 60m − 30m + 3m v cos θ
0 = 30m + 3m v cos θ
-30m = 3m v cos θ
-10 = v cos θ
In the y direction:
Momentum before = momentum after
(m + 2m + 3m) (0) = m (60 sin 0°) + 2m (30 sin 120°) + 3m (v sin θ)
0 = 0 + 30√3 m + 3m v sin θ
-30√3m = 3m v sin θ
-10√3 = v sin θ
Square the two equations and add together:
(-10)² + (-10√3)² = (v cos θ)² + (v sin θ)²
100 + 300 = v² cos² θ + v² sin² θ
400 = v² (cos² θ + sin² θ)
400 = v²
v = 20
The speed of fragment C is 20 m/s.
I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
Given,
Current (I) = 0.50A
Voltage (V) = 120 volts
Resistance (R) =?
We know that:-
Voltage (V) = Current (I) x Resistance (R)
→Resistance (R) = Voltage (V) / Current (I)
= 120/0.50
= 24Ω
∴ Resistance (R) = 24Ω