Force = mass * acceleration
F = ma
Given m = 10 kg, F = 30 N;
F = ma
30 = 10a
Solving for a:
a = 3 m/s^2
The acceleration is 3 meters per second squared.
The control setup in this experiment would be one tank that does not contain any of the additives. Since the tanks with the gasoline additives would need to be compared with a tank that is not affected by the results of these additives.
Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm
Answer:
8 m/s²
Explanation:
Given,
Force ( F ) = 4 N
Mass ( m ) = 0.5 kg
To find : -
Acceleration ( a ) = ?
Formula : -
F = ma
a = F / m
= 4 / 0.5
= 40 / 5
a = 8 m/s²
It's acceleration is 8 m/s².
The answer is the fourth choice because there are 7 represents in a coefficient.