Answer:
The value of tangential acceleration
40 ![\frac{m}{s^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D)
The value of radial acceleration ![\alpha_{r} = 80 \frac{m}{s^{2} }](https://tex.z-dn.net/?f=%5Calpha_%7Br%7D%20%3D%2080%20%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D)
Explanation:
Angular acceleration = 50 ![\frac{rad}{s^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Brad%7D%7Bs%5E%7B2%7D%20%7D)
Radius of the disk = 0.8 m
Angular velocity = 10 ![\frac{rad}{s}](https://tex.z-dn.net/?f=%5Cfrac%7Brad%7D%7Bs%7D)
We know that tangential acceleration is given by the formula
![r \alpha](https://tex.z-dn.net/?f=r%20%5Calpha)
Where r = radius of the disk
= angular acceleration
⇒
0.8 × 50
⇒
40 ![\frac{m}{s^{2} }](https://tex.z-dn.net/?f=%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D)
This is the value of tangential acceleration.
Radial acceleration is given by
![\alpha_{r} = \frac{V^{2} }{r}](https://tex.z-dn.net/?f=%5Calpha_%7Br%7D%20%3D%20%5Cfrac%7BV%5E%7B2%7D%20%7D%7Br%7D)
Where V = velocity of the disk = r ![\omega](https://tex.z-dn.net/?f=%5Comega)
⇒ V = 0.8 × 10
⇒ V = 8 ![\frac{m}{s}](https://tex.z-dn.net/?f=%5Cfrac%7Bm%7D%7Bs%7D)
Radial acceleration
![\alpha_{r} = \frac{8^{2} }{0.8}](https://tex.z-dn.net/?f=%5Calpha_%7Br%7D%20%3D%20%5Cfrac%7B8%5E%7B2%7D%20%7D%7B0.8%7D)
![\alpha_{r} = 80 \frac{m}{s^{2} }](https://tex.z-dn.net/?f=%5Calpha_%7Br%7D%20%3D%2080%20%5Cfrac%7Bm%7D%7Bs%5E%7B2%7D%20%7D)
This is the value of radial acceleration.
Answer:
The bit take to reach its maximum speed of 8,42 x10^4 rad/s in an amount of 1.097 seconds.
Explanation:
ω1= 1.72x10^4 rad/sec
ω2= 5.42x10^4 rad/sec
ωmax= 8.42x10^4 rad/sec
θ= 1.72x10^4 rad
![\alpha = \frac{w2^{2}-w1^{2} }{2*(\theta2 - \theta1)}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7Bw2%5E%7B2%7D-w1%5E%7B2%7D%20%20%7D%7B2%2A%28%5Ctheta2%20-%20%5Ctheta1%29%7D)
α=7.67 x10^4 rad/sec²
t= ωmax / α
t= 8.42 x10^4 rad/sec / 7.67 x10^4 rad/sec²
t=1.097 sec
Answer: The working and answer can be viewed from the screenshots below. Thanks
Answer:
1......... .......... ......