Answer:
The pull or push which changes or tends to change the position of an object from rest to motion or motion to rest is known as force.
Its SI unit is newton(n).
Answer: KE = 25 J
Explanation: You must use the formula
KE = 1/2 m v²
to solve this problem.
KE = 1/2 (10 Kg) (5 m/s)
KE = 1/2 (50 kgm/s)
KE = 25 J
Kinetic energy is energy of motion.
In the cases of a stretched rubber band, water in a reservoir, natural gas, or an object suspended above the ground, everything is just laying there, and nothing is moving. There's nothing there that has kinetic energy.
If there's any wind, then air is moving. The moving air has kinetic energy.
Answer:
The pressure of the air molecules inside the pen cap increases and the volume occupied by the air decreases such that the combined volume occupied by the pen cap and the air volume reduces while the combined mass of the pen cap and the air molecules remain the same
Given that density = The mass/Volume, we have that the density varies inversely as the volume, and as the volume reduces, the density increases
Upon squeezing, therefore, as the new combined density of the pen cap and the air molecules rises to more than the density of the water in the bottle, then, the pen cap air molecule is relatively more denser than the water, which will result in the pen cap sinking to the bottom of the bottle
Explanation:
Answer:
Explanation:
Time taken to complete one revolution is called time period.
So, Time period, T = 1 s
Diameter = 1.6 mm
radius, r = 0.8 mm
Let the angular speed is ω.
The relation between angular velocity and the time period is
ω = 2 x 3.14 = 6.28 rad/s
The relation between the linear velocity and the angular velocity is
v = r x ω
v = 0.8 x 10^-3 x 6.28
v = 0.005 m/s