Answer:
being polar, it can easily dissolve other polar substances or substances with ionic bonds like nacl
Answer:
We report an unusual case of mercury vapor poisoning from using a heated tobacco product. The suspect had added grains of mercury into 20 cigarettes in a pack. When a 36-year-old Japanese man inserted one of these cigarettes into the battery powered holder, it was heated to a temperature of 350 °C, and he inhaled vaporized mercury. After using 14 of the cigarettes over 16 h, he noticed he had flu-like symptoms so he visited the hospital. Although no physical abnormalities were revealed, 99 μg/L of mercury was detected in his serum sample. His general condition improved gradually and his whole blood mercury level had decreased to 38 μg/L 5 days later. When the remaining six cigarettes in the pack were examined, many metallic grains weighing a total of 1.57 g were observed. Energy dispersive X-ray fluorescence spectrometry confirmed the grains as elemental mercury. Accordingly, the victim was diagnosed with mercury poisoning. Because the mercury was incorporated into cigarettes, an unusual and novel intoxication occurred through the heating of the tobacco product. Both medical and forensic scientific examination confirmed this event as attempted murder.
Explanation:
An ionic bond occurs when an atom transfers or takes Electrons from another atom.
Answer:
Water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Explanation:
Hello.
In this case, since no options are given we can infer from the statement that due to water's higher boiling point than acetone we can conclude that when they are in liquid state, water has stronger intermolecular forces which allow its particles to be held in a stronger way in comparison to the acetone's molecules, for that reason, more energy will be required in order to separate them and promote the boiling process, which is attained via increasing the temperature. Besides, less energy will be required for the separation of the acetone's molecules in order to boil it when liquid, therefore, a lower temperature is required.
In such a way, we can sum up that water's boiling point is higher than acetone's one due to the stronger intermolecular forces it has in liquid phase.
Regards.